Процентная пропорция. Вычисление процентов, или повседневная математика

Содержание
  1. Вычисление процентов, или повседневная математика. Как считать пропорцию
  2. Что такое процент от числа
  3. Вычисление процентов по формулам
  4. Расчеты при помощи пропорции
  5. Альтернативный метод вычислений
  6. Задача B2 на проценты №2
  7. Вычисление пропорции. Вычисление процентов, или повседневная математика
  8. Как удалить ссылки из старого стандартного шаблона Blogger
  9. Убрать внешние ссылки из нового стандартного шаблона Blogger
  10. Вычисление процентов, или повседневная математика. Как считать проценты
  11. Как узнать процент от суммы в общем случае?
  12. Как высчитать процент из суммы с помощью пропорции?
  13. Как рассчитать процент от суммы с помощью известных соотношений?
  14. Как вычесть процент от суммы без помощи калькулятора
  15. Как высчитать (отнять) из суммы процент с калькулятором в руках
  16. Как отнять от суммы процент с помощью онлайн-калькулятора
  17. 1. Формула расчета доли в процентном отношении
  18. 2. Формула расчета процента от числа
  19. 3. Формула увеличения числа на заданный процент. Сумма с НДС
  20. 4. Формула уменьшения числа на заданный процент
  21. 5. Формула вычисления исходной суммы. Сумма без НДС
  22. 6. Расчет процентов на банковский депозит. Формула расчета простых процентов
  23. Все о процентах. Подобная понятная теория. Разбор задач
  24. Что такое процент?
  25. Пример 1
  26. Пример 2
  27. Пример 3
  28. Проценты и десятичные дроби
  29. Пример 4
  30. Пример 5
  31. Изменение числа на сколько-то процентов
  32. Пример 7
  33. Пример 8
  34. Примеры 9 -11
  35. Примеры 12 – 14
  36. Пример 15
  37. Пример 16
  38. Где мы используем проценты в жизни?
  39. Проценты. Коротко о главном
  40. ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Вычисление процентов, или повседневная математика. Как считать пропорцию

Процентная пропорция. Вычисление процентов, или повседневная математика

Вычисление процентов – несложная математическая операция, которая довольно часто встречается в повседневной жизни.

Например, нужно посчитать, сколько человек экономит, используя дисконтную карту магазина или покупая товар на распродаже со скидкой, под какой процент берет кредит.

Проценты можно посчитать при помощи калькулятора или пропорции, пригодится формула вычисления процентов и знание элементарных известных соотношений.

Что такое процент от числа

Вычисление процентов в школьной программе изучается классе в 5-м, если не раньше. Согласно определению, процент – это одна сотая часть числа. Термин появился в Древнем Риме и буквально переводится как «со ста». Первоначально идея вычислять проценты зародилась еще в Вавилоне. Параллельно в Древней Индии научились считать проценты при помощи пропорции.

Для того чтобы найти процент от числа, необходимо данное число поделить на 100. Очевидно, что 1 % от 100 равняется единице.

Вычисление процентов по формулам

Формула, позволяющая найти процент от числа, элементарна. Необходимо число поделить на 100, после чего умножить на нужный процент.

Если принять за Х исходное число, а за Y – искомый процент, то формула записывается в виде X/100*Y=…

Расчеты при помощи пропорции

Вычисление процентов можно производить, имея понимание метода пропорции. Пусть А – основное число, принятое за 100 %, В – число, соотношение которого с А в процентном соотношении необходимо высчитать, а Х – число искомых процентов. Тогда:

А – 100 %,
В – Х %.

Умножение крест-накрест даст равенство: А*Х=В*100. Следовательно, Х=В*100/А.

Например, необходимо узнать, сколько процентов от 300 составляет число 75. Получается: 75*100/300=25 %.

Альтернативный метод вычислений

Представим один процент не десятичной, а простой дробью – 1/100. Аналогично можно записать любое количество процентов. Так, 10 % – это 0,1 или 1/10, 25 % – 0,25 или 25/100=1/4 и так далее. Следовательно, найти 10 % от числа довольно просто – нужно разделить исходное число на 10. Таким способом удобно вычислять 20, 25 и 50 процентов:

  • 20 % – это 1/5, значит, нужно делить на 5 исходное число.
  • 25 % – 1/4, нужно делить на 4.
  • 50 % – это 1/2, просто делить на два.

Но не всякий процент удобно рассчитать таким методом. К примеру, 33 % – это 33/100, что при записи десятичной дробью дает 0,3333 с бесконечным количеством троек после запятой.

Если возникают сомнения в правильности проводимых расчетов, всегда можно проверить себя на калькуляторе, который сейчас есть в любом мобильном устройстве и на любом компьютере.

В прошлом видеоуроке мы рассматривали решение задач на проценты с помощью пропорций. Тогда по условию задачи нам требовалось найти значение той или иной величины.

В этот раз исходное и конечное значения нам уже даны. Поэтому в задачах будет требоваться найти проценты. Точнее, на сколько процентов изменилась та или иная величина. Давайте попробуем.

Задача. Кроссовки стоили 3200 рублей. После повышения цены они стали стоить 4000 рублей. На сколько процентов была повышена цена на кроссовки?

Итак, решаем через пропорцию. Первый шаг — исходная цена была равна 3200 рублей. Следовательно, 3200 рублей — это 100%.

Кроме того, нам дана конечная цена — 4000 рублей. Это неизвестное количество процентов, поэтому обозначим его за x. Получим следующую конструкцию:

3200 — 100%
4000 — x%

Что ж, условие задачи записано. Составляем пропорцию:

Дробь слева прекрасно сокращается на 100: 3200: 100 = 32; 4000: 100 = 40. Кроме того, можно сократить на 4: 32: 4 = 8; 40: 4 = 10. Получим следующую пропорцию:

Воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних. Получаем:

8 · x = 100 · 10;
8x = 1000.

Это обычное линейное уравнение. Отсюда находим x:

x = 1000: 8 = 125

Итак, мы получили итоговый процент x = 125. Но является ли число 125 решением задачи? Нет, ни в коем случае! Потому что в задачи требуется узнать, на сколько процентов была повышена цена на кроссовки.

На сколько процентов — это значит, что нам нужно найти изменение:

∆ = 125 − 100 = 25

Получили 25% — именно настолько была повышена исходная цена. Это и является ответом: 25.

Задача B2 на проценты №2

Переходим ко второй задаче.

Задача. Рубашка стоила 1800 рублей. После снижения цены она стала стоить 1530 рублей. На сколько процентов была снижена цена на рубашку?

Переводим условие на математический язык. Исходная цена 1800 рублей — это 100%. А итоговая цена 1530 рублей — она нам известна, но неизвестно, сколько процентов она составляет от исходной величины. Поэтому обозначим ее за x. Получим следующую конструкцию:

1800 — 100%
1530 — x%

На основе полученной записи составляем пропорцию:

Давайте для упрощения дальнейших вычислений разделим обе части данного уравнения на 100. Другими словами, у числителя левой и правой дроби мы зачеркнем два нуля. Получим:

Теперь снова воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних.

18 · x = 1530 · 1;
18x = 1530.

Осталось найти x:

x = 1530: 18 = (765 · 2) : (9 · 2) = 765: 9 = (720 + 45) : 9 = 720: 9 + 45: 9 = 80 + 5 = 85

Мы получили, что x = 85. Но, как и в прошлой задаче, это число само по себе не является ответом. Давайте вернемся к нашему условию. Теперь мы знаем, что новая цена, полученная после снижения, составляет 85% от старой. И для того, чтобы найти изменения, нужно из старой цены, т.е. 100%, вычесть новую цену, т.е. 85%. Получим:

∆ = 100 − 85 = 15

Это число и будет ответом: Обратите внимание: именно 15, а ни в коем случае не 85. Вот и все! Задача решена.

Внимательные ученики наверняка спросят: почему в первой задаче мы при нахождении разности вычитали из конечного числа начальное, а во второй задаче поступили в точности до наоборот: из исходных 100% вычли конечные 85%?

Давайте проясним этот момент. Формально, в математике изменением величины всегда называется разность между конечным значением и начальным. Другими словами, во второй задаче у нас должно было получиться не 15, а −15.

Однако этот минус ни в коем случае не должен попасть в ответ, потому что он уже учтен в условии исходной задачи. Там прямо сказано о снижении цены. А снижение цены на 15% — это то же самое, что повышение цены на −15%. Именно поэтому в решении и ответе задачи достаточно написать просто 15 — без всяких минусов.

Все, надеюсь, с этим моментом мы разобрались. На этом наш сегодняшний урок закончен. До новых встреч!

В разделе на вопрос Напомните как с помощью пропорции высчитывать проценты? заданный автором силосовать лучший ответ это На бумажке перемножая крестиком известные данные и деля на 3-е число. Примерно так:500=100%200=??? %Итого 200*100/500= 40 %

Ну вот как-то так…))

Ответ от Ёергей Орлов[мастер]Сложные задачи по математике на % слабым ученикам лучше находить с помощью пропорций.Проценты от числа они могут находить без пропорций.Умножаешь на калькуляторе само число на кол-во %, деленных на 100. Чтоб найти 13 % от 70 нужно 70*0,13Существую еще 2 типа задач на %.

Чтоб найти ск-ко % составляет часть от целого. Хотя тут без пропорций легко можно обойтись.А вот когда известны % от числа. Тут уже у многих сложности.Если попадается задача на %, за “х” принимаешь то, что нужно найти.Ставишь черточку и пишешь, чему оно соответствует.Внизу пишешь следующие данные.

Например, по последнему типу задача.Многим 4-шникам ее сложно решить.5% некоторого числа равно, допустим 12.Найти само число. Применим это к химии. Дан 5%-й р-р кислоты. Масса самой к-ты (чистого в-ва, концентрированной) в р-ре составляет 12 г. Найти массу всего р-ра.Пишем пропорцию.

х ——100%12 г ——-5%Умножаем крест-накрест.х*5 = 12*100 Решаем получившееся ур-е

х=(12*100)5=240 (г.)

Источник: https://dceco.ru/vychislenie-procentov-ili-povsednevnaya-matematika-kak-schitat-proporciyu.html

Вычисление пропорции. Вычисление процентов, или повседневная математика

Процентная пропорция. Вычисление процентов, или повседневная математика

Задача 1. Толщина 300 листов бумаги для принтера составляет 3, 3 см. Какую толщину будет иметь пачка из 500 листов такой же бумаги?

Решение. Пусть х см — толщина пачки бумаги из 500 листов. Двумя способами найдем толщину одного листа бумаги:

3,3:300 или х:500.

Так как листы бумаги одинаковые, то эти два отношения равны между собой. Получаем пропорцию (напоминание:пропорция — это равенство двух отношений):

х=(3,3·500):300;

х=5,5. Ответ: пачка 500 листов бумаги имеет толщину 5,5 см.

Это классическое рассуждение и оформление решения задачи. Такие задачи часто включают в тестовые задания для выпускников, которые обычно записывают решение в таком виде:

или решают устно, рассуждая так: если 300 листов имеют толщину 3,3 см, то 100 листов имеют толщину в 3 раза меньшую. Делим 3,3 на 3, получаем 1,1 см. Это толщина 100 листовой пачки бумаги. Следовательно, 500 листов будут иметь толщину в 5 раз большую, поэтому, 1,1 см умножаем на 5 и получаем ответ: 5,5 см.

Разумеется, это оправдано, так как время тестирования выпускников и абитуриентов ограничено. Однако, на этом занятии мы будем рассуждать и записывать решение так, как положено это делать в 6 классе.

Задача 2.Сколько воды содержится в 5 кг арбуза, если известно, что арбуз состоит на 98% из воды?

Решение.

Вся масса арбуза (5 кг) составляет 100%. Вода составит х кг или 98%. Двумя способами можно найти, сколько кг приходится на 1% массы.

5:100 или х:98. Получаем пропорцию:

5:100 = х:98.

х=(5·98):100;

х=4,9 Ответ: в 5кг арбуза содержится 4,9 кг воды.

Масса 21 литра нефти составляет 16,8 кг. Какова масса 35 литров нефти?

Решение.

Пусть масса 35 литров нефти составляет х кг. Тогда двумя способами можно найти массу 1 литра нефти:

16,8:21 или х:35. Получаем пропорцию:

16,8:21=х:35.

Находим средний член пропорции. Для этого перемножаем крайние члены пропорции (16,8 и 35) и делим на известный средний член (21). Сократим дробь на 7.

Умножаем числитель и знаменатель дроби на 10, чтобы в числителе и знаменателе были только натуральные числа. Сокращаем дробь на 5(5 и 10) и на 3 (168 и 3).

Ответ:35 литров нефти имеют массу 28 кг.

После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?

Решение.

Пусть площадь всего поля х га, что составляет 100%. Осталось вспахать 9 га, что составляет 100% — 82% = 18% всего поля. Двумя способами выразим 1% площади поля. Это:

х:100 или 9:18. Составляем пропорцию:

х:100 = 9:18.

Находим неизвестный крайний член пропорции. Для этого перемножаем средние члены пропорции (100 и 9) и делим на известный крайний член (18). Сокращаем дробь.

Ответ: площадь всего поля 50 га.

Страница 1 из 11

(от лат. ргороrtio — «соизмеримость»).

Если соотношение а:b равно соотношению с:d, то тождество а:b = с:d называют пропорцией.

Если , то равенство сохранится и в следующих случаях:

(увеличение пропорции),

(уменьшение пропорции).

(составление пропорции сложением),

(составление пропорции вычитанием).

Обратим внимание, что составление пропорций — ещё один способ решения задач на проценты .

Например:

Олово производят из минерала, который называют касситеритом. Сколько тонн олова получат из 25 т касситерита, если он содержит 78 % олова?

Решение. Пусть получат х т олова. Взяв массу минерала за 100 % , запишем:

Решив 25.78 = 100х мы находим, что х = 19,5т.

Концепция пропорции тесно взаимосвязана с пропорциональностью . Пропорциональность – это неизменное соотношение двух величин друг к другу. Например, чем больше мы давим на педаль “газ” в машине, тем стремительнее она поедет.

Пропорциональность может быть прямой и обратной.

Прямая пропорциональность -рост одной величины влечет за собой рост другой.

Обратная пропорциональность существует тогда, когда рост одной величины в несколько раз, во столько же раз уменьшает другую. Продолжая предыдущий пример– обратная пропорциональность между нажатием на педаль “тормоз” и скоростью автомобиля – чем больше мы давим на тормоз, тем меньше скорость.

Вычисление процентов – несложная математическая операция, которая довольно часто встречается в повседневной жизни.

Например, нужно посчитать, сколько человек экономит, используя дисконтную карту магазина или покупая товар на распродаже со скидкой, под какой процент берет кредит.

Проценты можно посчитать при помощи калькулятора или пропорции, пригодится формула вычисления процентов и знание элементарных известных соотношений.

Как удалить ссылки из старого стандартного шаблона Blogger

На примере шаблона Простой (Simple). Такие шаблоны дают больше всего внешних ссылок. В моем тестовом блоге при установке простой темы при проверке обнаружилось 25 внешних ссылок на главной странице, из них индексировались 14.

Напоминаю, что перед тем, как производить изменения в коде шаблона, сделайте резервную копию!

  1. Удалить ссылку на Blogger – https://www.blogger.com/. Эта ссылка заключена в виджете Attribution. Во вкладке “Дизайн блога” он отображается, как гаджет Атрибуция и . Чтобы его удалить, переходим во вклудку “Тема”-> изменить HTML. По поиску виджетов (список виджетов) находим Attribution1 и удаляем весь код вместе с секцией footer, в которую он заключен. Так выглядит удаляемый код в свёрнутом виде:А так полный код: Сохраняем изменения и проверяем блог на наличие Атрибуции.
  2. Вы, конечно же видели в своём блоге иконки “Гаечный ключ и отвертка”для быстрого редактирования виджетов. Каждая такая иконка несет с собой внешню ссылку на Blogger. Сейчас они закрыты тегом nofollow, но все равно от них нужно избавляться. Править же виджеты вы будете во вкладке Дизайн. Вот неполный перечень ссылок, которые зашифрованы в иконках гаечного ключа (ID блога будет ваш)

    – Виджет HTML1: http://www.blogger.com/rearrange?blogID=1490203873741752013&widgetType=HTML&widgetId=HTML1&action=editWidget§ionId=header

    – Виджет HTML2 http://www.blogger.com/rearrange?blogID=1490203873741752013&widgetType=HTML&widgetId=HTML2&action=editWidget§ionId=header
    – Архив блога: http://www.blogger.com/rearrange?blogID=1490203873741752013&widgetType=BlogArchive&widgetId=BlogArchive1&action=editWidget§ionId=main
    – Ярлыки блога: http://www.blogger.com/rearrange?blogID=1490203873741752013&widgetType=Label&widgetId=Label1&action=editWidget§ionId=main
    – Популярные сообщения: http://www.blogger.com/rearrange?blogID=1490203873741752013&widgetType=PopularPosts&widgetId=PopularPosts2&action=editWidget§ionId=main
    От всех этих ссылок легко избавиться. Найдите в шаблоне блога тег . Он встречается столько раз, сколько виджетов в вашем блоге. Удалите все вхождения тега .

  3. Удаляем ссылки на быстрое редактирование записи блога(иконка “Карандаш”). Упрощает редактирование постов, но несет в себе угрозу в качестве внешней ссылки вида: https://www.blogger.com/post-edit.g?blogID=1490203873741752013&postID=4979812525036427892&from=pencilКак удалить: Способ 1. Во вкладке Дизайн отредактируйте элемент “Сообщения блога” и снимите галочку в пункте “Показать “Быстрое редактирование””.

    Способ 2. найдите в шаблоне блога тег и удалите его. Сохраните изменения и проверьте свой блог на наличие иконки и ссылки.

  4. Удалить Navbar. Найдите по поиску виджетов в шаблоне html блога Navbar1 и удалите весь код вместе с секцией.

    А именно:

    Сейчас Навбар в блоге не дает индексируемых внешних ссылок, но я считаю, что это лишний элемент, который не несет в себе функциональной нагрузки, и его лучше удалить.

  5. Удалите внешние ссылки на изображения. При загрузки изображений в сообщение блога, в них автоматически встраивается ссылка. Чтобы убрать такие ссылки, необходимо отредактировать все записи блога. В режиме “Просмотр” и далее на иконку “Ссылка”. Если изображение не несет в себе внешнюю ссылку, то при клике на фото в редакторе записи иконка “Ссылка” не активна (нет подсветки иконки).
  6. Удалить ссылку на профиль автора блога. Удалить автора блога под записью. Для этого найдите код true и вместо true пропишите false. Получится false
  7. Закрыть ссылку из виджета “ ” от индексирования тегом nofollow. Если вы используете в своем блоге виджет “профиль”, то найдите через быстрый поиск по виджетам в шаблоне блога код гаджета Profile1. Нужно отредактировать код виджета, заменив в двух местах rel=’author’ на rel=’nofollow’ и добавить к двум ссылкам rel=’nofollow’. У вас должно получиться, как на скриншоте:

    Сделано на примере редактирования профиля Google Plus. Напоминаю, что Google Plus будет ликвидирован 2 апреля 2019 года. Соответственно после этой даты нужно будет производить другие изменения в коде виджета “Обо мне”.

  8. Проверяем на наличие внешних ссылок любую страницу записи Blogspot, к которой оставлены комментарии. Найдите и удалите в шаблоне блога код:
    В Настройках блога по пути Настройки блога -> Другое -> Фид сайта -> Разрешаем фид блога применяем следующие настройки:

Убрать внешние ссылки из нового стандартного шаблона Blogger

На примере темы Notable

  1. Удаляем Attribution (ссылка внизу – Технологии Blogger)
    Находим в шаблоне блога по поиску по виджетам (список виджетов) Attribution1 и удаляем код вместе с секцией по аналогии со старым шаблоном Blogger (смотри выше 1).
  2. Удаляем ссылку из виджета «Сообщить о нарушении». Это виджет ReportAbuse1. Находим в поиске по виджетам:Код выглядит целиком так:

Источник: https://www.rikk-service.ru/vychislenie-proporcii-vychislenie-procentov-ili-povsednevnaya.html

Вычисление процентов, или повседневная математика. Как считать проценты

Процентная пропорция. Вычисление процентов, или повседневная математика

Правила записи чисел, имеющих дробную часть, предусматривают несколько форматов, основными из которых являются «десятичный» и «обыкновенный». Обыкновенные дроби, в свою очередь, могут быть записаны в форматах, называемых «неправильными» и «смешанными». Для выделения целой части из дробного числа каждого из этих вариантов записи удобнее применять различающиеся способы.

Инструкция

Отбросьте дробную часть, если надо выделить из положительной дроби, записанной в смешанном формате. В такой дроби целая часть перед дробной – например, 12 ⅔. В этой дроби целой частью будет число 12.

Если смешанная дробь имеет знак, то полученное таким способом число уменьшайте на единицу. Необходимость этого действия вытекает из определения целой части числа, согласно она не может быть больше значения исходной дроби.

Например, целой частью дроби -12 ⅔ является число -13.

Разделите без остатка числитель исходной дроби на ее знаменатель, если она записана в неправильном обыкновенном формате.

Если исходное число имеет положительный знак, то полученный результат и будет целой частью. Например, целая часть дроби 716/51 равна 14.

Если же исходное число отрицательно, то и здесь от результата следует отнять единицу – например, вычисление целой части дроби -716/51 должно дать число -15.

Считайте ноль целой частью положительной дроби, записанной в обыкновенном формате и при этом не являющейся ни смешанной, ни неправильной. Например, это к дроби 48/51. Если исходная дробь меньше нуля, то, как и в предыдущих случаях, результат нужно на один. Например, целой частью дроби -48/51 следует считать число -1.

Отбросьте все знаки, стоящие после десятичной запятой, если выделить надо из положительного числа, записанного в формате десятичной дроби. В этом случае именно разделительная

Как посчитать процент от суммы, требуется знать во многих случаях (при расчете госпошлины, кредита и т. п.). Мы расскажем,как посчитать проценты от суммы с помощью калькулятора, пропорций и известных соотношений.

Как узнать процент от суммы в общем случае?

После этого есть два варианта:

  1. Если нужно узнать, сколько процентов составляет другая сумма от первоначальной, нужно просто разделить ее на размер 1%, полученный ранее.
  2. Если же нужен размер суммы, которая составляет, скажем, 27,5% от первоначальной, нужно размер 1% умножить на требуемое количество процентов.

Как высчитать процент из суммы с помощью пропорции?

Но можно поступить и иначе. Для этого придется использовать знания о методе пропорций, который проходят в рамках школьного курса математики. Это будет выглядеть так.

Пусть у нас есть А — основная сумма, равная 100%, и В — сумма, соотношение которой с А в процентах нам нужно узнать. Записываем пропорцию:

(Х в данном случае — число процентов).

По правилам расчета пропорций мы получаем следующую формулу:

Х = 100 * В / А

Если же нужно узнать, сколько будет составлять сумма В при уже известном числе процентов от суммы А, формула будет выглядеть по-другому:

В = 100 * Х / А

Теперь остается подставить в формулу известные числа — и можно производить расчет.

Как рассчитать процент от суммы с помощью известных соотношений?

Наконец, можно воспользоваться и более простым способом. Для этого достаточно помнить, что 1% в виде десятичной дроби — это 0,01. Соответственно, 20% — это 0,2; 48% — 0,48; 37,5% — это 0,375 и т. д. Достаточно умножить исходную сумму на соответствующее число — и результат будет означать размер процентов.

Кроме того, иногда можно воспользоваться и простыми дробями. Например, 10% — это 0,1, то есть 1/10 следовательно, узнать, сколько составят 10%, просто: нужно всего лишь разделить исходную сумму на 10.

Другими примерами таких соотношений будут:

  • 12,5% — 1/8, то есть нужно делить на 8;
  • 20% — 1/5, то есть нужно разделить на 5;
  • 25% — 1/4, то есть делим на 4;
  • 50% — 1/2, то есть нужно разделить пополам;
  • 75% — 3/4, то есть нужно разделить на 4 и умножить на 3.

Правда, не все простые дроби удобны для расчета процентов. К примеру, 1/3 близка по размерам к 33%, но не равна точно: 1/3 — это 33,(3)% (то есть дробь с бесконечными тройками после запятой).

Как вычесть процент от суммы без помощи калькулятора

Если же требуется от уже известной суммы отнять неизвестное число, составляющее какое-то количество процентов, можно воспользоваться следующими методами:

  1. Вычислить неизвестное число с помощью одного из приведенных выше способов, после чего отнять его от исходного.
  2. Сразу рассчитать остающуюся сумму. Для этого от 100% отнимаем то число процентов, которое нужно вычесть, и полученный результат переводим из процентов в число любым из описанных выше способов.

Второй пример удобнее, поэтому проиллюстрируем его. Допустим, надо узнать, сколько останется, если от 4779 отнять 16%. Расчет будет таким:

  1. Отнимаем от 100 (общее количество процентов) 16. Получаем 84.
  2. Считаем, сколько составит 84% от 4779. Получаем 4014,36.

Как высчитать (отнять) из суммы процент с калькулятором в руках

Все вышеприведенные вычисления проще делать, используя калькулятор. Он может быть как в виде отдельного устройства, так и в виде специальной программы на компьютере, смартфоне или обычном мобильнике (даже самые старые из ныне используемых устройств обычно имеют эту функцию). С их помощью вопрос, как высчитать процент из суммы, решается очень просто:

  1. Набирается исходная сумма.
  2. Нажимается знак «-».
  3. Вводится число процентов, которое требуется вычесть.
  4. Нажимается знак «%».
  5. Нажимается знак «=».

В итоге на экране высвечивается искомое число.

Как отнять от суммы процент с помощью онлайн-калькулятора

Наконец, сейчас в сети достаточно сайтов, где реализована функция онлайн-калькулятора. В этом случае даже не требуется знания того, как посчитать процент от суммы: все операции пользователя сводятся к вводу в окошки нужных цифр (или передвижению ползунков для их получения), после чего результат сразу высвечивается на экране.

Особенно эта функция удобна тем, кто рассчитывает не просто абстрактный процент, а конкретный размер налогового вычета или сумму госпошлины.

Дело в том, что в этом случае вычисления сложнее: требуется не только найти проценты, но и прибавить к ним постоянную часть суммы. Онлайн-калькулятор позволяет избежать подобных добавочных вычислений.

Главное — выбрать сайт, пользующийся данными, которые соответствуют действующему закону.

Проценты — удобная относительная мера, позволяющая оперировать с числами в привычном для человека формате не зависимо от размера самих чисел. Это своего рода масштаб, к которому можно привести любое число. Один процент — это одна сотая доля. Само слово процент происходит от латинского «pro centum», что означает «сотая доля».

Проценты незаменимы в страховании, финансовой сфере, в экономических расчетах. В процентах выражаются ставки налогов, доходность капиталовложений, плата за заемные денежные средства (например, кредиты банка), темпы роста экономики и многое другое.

1. Формула расчета доли в процентном отношении

Пусть задано два числа: A 1 и A 2 . Надо определить, какую долю в процентном отношении составляет число A 1 от A 2 .

P = A 1 / A 2 * 100.

В финансовых расчетах часто пишут

P = A 1 / A 2 * 100%.

Пример. Какую долю в процентном отношении составляет 10 от 200

P = 10 / 200 * 100 = 5 (процентов).

2. Формула расчета процента от числа

Пусть задано число A 2 . Надо вычислить число A 1 , составляющее заданный процент P от A 2 .

A 1 = A 2 * P / 100.

Пример. Банковский кредит 10 000 рублей под 5 процентов. Сумма процентов составит.

P = 10000 * 5 / 100 = 500.

3. Формула увеличения числа на заданный процент. Сумма с НДС

Пусть задано число A 1 . Надо вычислить число A 2 , которое больше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 + A 1 * P / 100.

A 2 = A 1 * (1 + P / 100).

Пример 1. Банковский кредит 10 000 рублей под 5 процентов. Общая сумма долга составит.

A 2 = 10000 * (1 + 5 / 100) = 10000 * 1.05 = 10500.

Пример 2. Сумма без НДС равна 1000 рублей, НДС 18 процентов.Сумма с НДС составляет:

A 2 = 1000 * (1 + 18 / 100) = 1000 * 1.18 = 1180.

style=”center”>

4. Формула уменьшения числа на заданный процент

Пусть задано число A 1 . Надо вычислить число A 2 , которое меньше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 – A 1 * P / 100.

A 2 = A 1 * (1 – P / 100).

Пример. Денежная сумма к выдаче за минусом подоходного налога (13 процентов).Пусть оклад составляет 10 000 рублей. Тогда сумма к выдаче составляет:

A 2 = 10000 * (1 – 13 / 100) = 10000 * 0.87 = 8700.

5. Формула вычисления исходной суммы. Сумма без НДС

Пусть задано число A 1 , равное некоторому исходному числу A 2 с прибавленным процентом P. Надо вычислить число A 2 . Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС.

Обозначим p = P / 100, тогда:

A 1 = A 2 + p * A 2 .

A 1 = A 2 * (1 + p).

Тогда

A 2 = A 1 / (1 + p).

Пример. Сумма с НДС равна 1180 рублей, НДС 18 процентов.Стоимость без НДС составляет:

A 2 = 1180 / (1 + 0.18) = 1000.

style=”center”>

6. Расчет процентов на банковский депозит. Формула расчета простых процентов

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.

S = K + (K*P*d/D)/100Sp = (K*P*d/D)/100

Источник: https://insayn.ru/vychislenie-procentov-ili-povsednevnaya-matematika-kak.html

Все о процентах. Подобная понятная теория. Разбор задач

Процентная пропорция. Вычисление процентов, или повседневная математика

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Наверняка ты терпеть не можешь слово «процент».

Но это чувство у тебя скоро исчезнет. Чтобы это произошло, мы разберем что такое процент,  как проценты “превращаются” в десятичные дроби и  как изменять число на такой-то процент.

Решим несколько задачек.

И все будет просто.

Поехали!

Проценты и десятичные дроби Изменение числа на сколько-то процентов Решение сложных задач на проценты Подобные задачи часто попадаются в ЕГЭ Где мы используем проценты в жизни? Проценты. Коротко о главном

Что такое процент?

Откуда взялось это слово?

Все очень просто. Слово процент произошло от латинского per cent– на сотню, и означает оно «сотая доля» или «сотая часть».

То есть один процент любого числа – это одна сотая этого числа.

И все.

Этого достаточно, чтобы решать задачи, в которых присутствует это противное слово «процент».

Например: чему равны   от числа  ?

Прочтем это задание по-другому: чему равны   сотых доли числа  ?

Элементарно, правда?

Нужно разделить число   на   частей (чтобы узнать, чему равна одна сотая доля – один процент) и взять   таких части.

Теперь запишем это на языке математики:

 .

Теперь другой пример.

Сколько процентов содержится в числе?

Снова перефразируем вопрос, заменив слово «процент» на «сотую часть»:

Сколько сотых частей находится в числе?

Ответ сразу становится очевидным: в любом числе или предмете находится ровно сто сотых частей (то есть, если разделить число или предмет на   частей, сколько будет этих частей? Очевидно же, что  ).

Разберем еще несколько примеров.

  1. Чему равны   от числа  ?
  2. Чему равно число,   которого равны  ?
  3. Сколько процентов составляет число   от числа  ?

Пример 1

1) И снова избавимся от слова «процент». Получим такой вопрос:

Чему равны   сотых числа  ?

 .

Может показаться странным, что у нас целых   – ведь мы уже выяснили, что в числе всего  .

Но с математической точки зрения ничего странного, ведь процент – это всего лишь одна сотая от числа.

Почему нельзя одну сотую числа взять   раз?

Можно, ведь по сути это – просто число.

Пример 2

2) Итак,   от числа равны  . Можем составить простенькое уравнение:

 .

Ты заметил, что я сразу же вместо   написал  ?

И правда, один процент – это одна сотая, а значит,   процентов – это   сотых.

Ты можешь тоже так делать.

Пример 3

3) Обозначим искомое количество процентов буквой  . Тогда   от числа   равно  . Или, что то же самое,   сотых от числа   равно  :

 .

Ответ:  .

Проценты и десятичные дроби

В разобранных выше примерах мы убедились, что вместо знака процента % можно писать  , или просто разделить на  .

То есть,   – это то же самое, что  ;   – это   и так далее.

Но ведь любую из этих дробей можно записать компактнее: в виде десятичной дроби.

Пример 4

 ;

 ;

 ,

и так далее.

Значит, проценты можно записать в виде десятичной дроби.

Правило перевода такое: сколько бы ни было процентов, смещаем десятичную запятую на два знака влево и убираем значок % – и таким образом получаем обычное число.

Данное правило будем теперь всегда применять сразу.

Пример 5

1) Чему равны   от числа  ?

Вместо   напишем что?  . Итак,  .

2)   от какого числа равны  ?

 .

Изменение числа на сколько-то процентов

Когда говорят, что число увеличилось на  , это значит, что к числу надо прибавить  .

Если же число уменьшилось на  , это значит, что из числа надо вычесть .

Цена холодильника в магазине за год увеличилась на . Какой стала цена, если изначально холодильник стоил  руб?

Решение:

Для начала определим, на сколько рублей изменилась (в данном случае – увеличилась) стоимость холодильника.

По условию – на  .

Но   от чего?

Конечно же, от самой начальной стоимости холодильника  –   руб.

Получается, что нам нужно найти   от  руб:

 .

Теперь мы знаем, что цена увеличилась на  руб.

Остается только, согласно правилу, прибавить к начальной стоимости величину изменения:

Новая цена   рублей.

Ответ:  

Пример 7

(постарайся решить самостоятельно):

Книга «Математика для чайников» в магазине стоит  руб. Во время акции все книги продаются со скидкой  

 Сколько теперь придется заплатить за эту книгу?

Решение:

Что такое скидка, ты наверняка знаешь? Скидка в  означает, что стоимость товара уменьшили на  

На сколько уменьшилась стоимость книги (в рублях)?

Нужно найти   от начальной ее стоимости в  руб:

 .

Цена уменьшилась, значит нужно из начальной стоимости вычесть то, на сколько она уменьшилась:

Новая цена   рублей.

Ответ:  

Правда ведь просто?

Но есть способ сделать это решение еще проще и короче!

Пример 8

Увеличьте число   на  .

Чему равны   от  ?

Как мы уже выяснили раньше, это будет  .

Теперь увеличим само число x на эту величину:

 .

Получается, что в результате мы к десятичной записи   прибавили   и умножили на число  .

Обобщим это правило:

Пусть нам нужно увеличить число   на  .

  от числа   – это  .

Тогда новое число будет равно:  .

Итак,

Чтобы увеличить число на  , нужно умножить его на  .

Например, увеличим число   на  :

 .

А теперь попробуй сам:

  1. Увеличить число   на  
  2. Увеличить число   на  
  3. На сколько процентов число   больше числа  ?

Примеры 9 -11

3) Пусть искомое количество процентов равно  .

Это значит, что если число   увеличить на  , получится  :

Ответ: на  .

Если число x надо уменьшить на  , все аналогично:

  от  

Уменьшить число на какую-то величину – значит вычесть из него эту величину:

 .

Итак, правило:

Чтобы уменьшить число на  , нужно умножить его на  .

Примеры 12 – 14

1) Уменьшить число   на  .

2) На сколько процентов число   меньше числа  ?

3) Цена товара со скидкой в   равна  р. Чему равна цена без скидки?

Решения:

1)  .

2) Число   уменьшили на x процентов и получили  :

 .

Ответ: на  .

3) Пусть цена без скидки равна  . Получается, что x уменьшили на   и получили  :

  (рублей).

Ответ:  .

Напоследок рассмотрим еще один тип задач, частенько вызывающих недоумение.

Пример 15

Число   больше числа   на  . На сколько процентов число   меньше числа  ?

Что за странный вопрос: конечно же на  !

Правильно?

А вот и нет.

Если, например, масса одного шкафа на 25 кг больше массы другого, то, без сомнения, масса второго шкафа на 25 кг меньше массы первого.

Но с процентами так не прокатит!

Ведь в первом случае, когда говорим, что число   на   больше числа  , мы считаем   от числа  ; а во втором случае, когда говорим, что число   на   меньше числа  , мы считаем   от числа  . А поскольку числа   и   разные, то и   от этих чисел будут разными!

Чтобы решить эту задачу верно, давай запишем условие в виде уравнения:

Число   больше числа   на  . Это значит, что если число   увеличить на  , получим число  :

 . (1)

Теперь в таком ж виде запишем вопрос: если число a уменьшить на   процентов, получим число  :

 . (2)

Выразим число   из равенства (1):

И подставим в (2):

 .

Отсюда следует, что:

  (%).

Итак, получаем, что число   на   меньше числа  !

Пример 16

В понедельник акции компании подорожали на некоторое число процентов, а во вторник подешевели на то же самое число процентов. В результате они стали стоить на   дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Решение:

Пусть цена акции в понедельник была равна  , а искомое количество процентов, записанное в виде десятичной дроби (то есть, уже поделенное на  ), равно  .

Запишем формулой, чему равна стоимость акции после подорожания:

 .

Далее, эту новую стоимость   уменьшили на   процентов:

 .

При этом известно, что эта конечная цена   на   меньше начальной цены  . То есть, если уменьшить   на  , получим  :

Подставим  , выраженное ранее:

 .

Согласно здравому смыслу подходит только положительное решение:

 .

Вспомним теперь, что это пока только десятичная запись искомого количества процентов, то есть это количество процентов, деленное на  . Чтобы перевести в проценты, нужно домножить на 100%:

Где мы используем проценты в жизни?

Ну например в банковских продуктах: вкладах, кредитах, ипотеке и т.д

Если ты хорошо понимаешь, что такое проценты и умеешь решать уравнения, то ты без труда расчитаешь, например, размер ежемесячного платежа по кредиту.

Или сколько придется переплатить, взяв ипотеку. Такая задача есть в ЕГЭ под номером 17.

Проценты. Коротко о главном

Один процент любого числа – это одна сотая этого числа.

1. Проценты и десятичные дроби

 ;

 ;

2. Изменение числа на сколько-то процентов

Допустим, нужно увеличить число   на  .

  от числа   – это  .

Тогда, новое число будет равно:  .

Чтобы увеличить число на  , нужно умножить его на  .

Если число   надо уменьшить на  , то :

  от  

Уменьшить число на какую-то величину – значит вычесть из него эту величину:

 .

Правило:

Чтобы уменьшить число на  , нужно умножить его на  .

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене “чашка кофе в месяц”, 

А также получить бессрочный доступ к учебнику “YouClever”, Программе подготовки (решебнику) “100gia”, неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

Вопросы адвокату
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: