Полная поверхность правильной призмы. Площадь боковой поверхности призмы

Содержание
  1. 08. Призма II
  2. Задача 1. 
  3. Задача 2
  4. Задача 3
  5. Задача 4
  6. Задача 5
  7. Задача 6
  8. Задача 7.
  9. Задача 8.
  10. Задача 9.
  11. Задача 10.
  12. Задача 11.
  13. Задача 12.
  14. Задача 13.
  15. Задача 14.
  16. Задача 15.
  17. Призма. Все что нужно знать для подготовки к ЕГЭ по математике
  18. Определение призмы
  19. Виды призм
  20. Объем и площадь призмы
  21. Что такое призма
  22. Высота призмы
  23. Прямая призма
  24. Правильная призма
  25. формула объема призмы
  26. Необычная формула объёма призмы
  27. Объем правильной треугольной призмы
  28. Объем правильной четырёхугольной призмы
  29. Объем правильной шестиугольной призмы
  30. Площадь поверхности призмы
  31.  
  32. ПРИЗМА. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ
  33. Теперь я хочу услышать тебя!
  34. Треугольная призма все формулы и примеры задач
  35. Определение
  36. Элементы треугольной призмы
  37. Виды треугольных призм
  38. Прямая треугольная призма
  39. Наклонная треугольная призма
  40. Объем треугольной призмы
  41. Площадь боковой поверхности призмы
  42. Площадь полной поверхности призмы
  43. Пример призмы
  44. Задачи на расчет треугольной призмы
  45. Призма площадь боковой и полной поверхности призмы. Объём и площадь поверхности правильной четырёхугольной призмы — Мед-Центр Здоровье
  46. Как выглядит призма
  47. Площадь поверхности и объём
  48. Нахождение элементов призмы
  49. Примеры задач с решениями
  50. Как найти площадь куба
  51. Правильная четырехугольная призма
  52. Объём и площадь поверхности правильной четырёхугольной призмы
  53. Самая удобная и увлекательная подготовка к ЕГЭ
  54. Формулы вычисления объема и площади поверхности призмы:
  55. В основании лежит треугольник
  56. 2. Ромб
  57. 3. Трапеция
  58. Рассмотрим площади правильных многоугольников:
  59. Подобие треугольников
  60. Теорема Пифагора
  61. Теорема синусов
  62. Теорема косинусов

08. Призма II

Полная поверхность правильной призмы. Площадь боковой поверхности призмы

Елена Репина 2013-09-06 2015-09-05

Продолжаем решать  задачи из открытого банка Заданий №8 ЕГЭ по математике.  В этот раздел попадают стереометрические задачи.

Смотрите также 1 (куб, параллелепипед), 2 (призма), 3 (пирамида, пирамида II), 4 (составные многогранники, составные многогранники II), 5 (цилиндр+конус), 6 (цилиндр), 7 (конус), 8 (шар).

Итак, сегодня работаем с призмой.

Задача 1. 

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 25 и 60, и боковым ребром, равным 25.

Решение: + показать

Площадь поверхности призмы :

Площадь ромба с диагоналями :

поэтому

Боковая поверхность данной  прямой призмы – четыре  равных прямоугольника.

Нам потребуется длина стороны ромба. Найдем ее по т. Пифагора из треугольника (по свойству ромба диагонали перпендикулярны и в точке пересечения делятся пополам):

Итак, 

Наконец,

Ответ: 4750. 

Задача 2

Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 3, а высота — 10.

 Решение: + показать

Площадь боковой поверхности правильной шестиугольной призмы  складывается из площадей 6-ти равных прямоугольников (одна сторона прямоугольника – сторона основания, вторая – высота призмы).

Ответ: 180. 

Задача 3

Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 15, а площадь поверхности равна 930.

Решение: + показать

В основании правильной четырехугольной призмы – квадрат и боковое ребро призмы перпендикулярно основанию.

То есть где – длина бокового ребра призмы.

Ответ: 8. 

Задача 4

Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 4 и 6, боковое ребро равно 5. Найдите объем призмы.

Решение: + показать

Объем призмы вычисляется по следующей формуле: ( – высота, в данном случае и боковое ребро прямой призмы).

При этом  в основании – прямоугольный треугольник, площадь которого находится как полупроизведение катетов:

Тогда

Ответ: 60. 

Задача 5

В сосуд, имеющий форму правильной треугольной призмы, налили 1300 см воды и погрузили в воду деталь. При этом уровень воды поднялся с отметки 25 см до отметки 28 см. Найдите объем детали. Ответ выразите в см

Решение: + показать

Объем детали равен объему вытесненной ею жидкости. Объем вытесненной жидкости равен объему прямой призмы с высотой 3 и основанием, равным основанию исходной призмы. То есть объем вытесненной жидкости составляет объема жидкости.

Итак, объем детали есть

Ответ: 156. 

Задача 6

В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 18  см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 3 раза больше, чем у первого? Ответ выразите в сантиметрах.

Решение: + показать

Пусть сторона основания правильной призмы – . Тогда площадь основания Объем воды, налитой в призму до уровня 18 см,  равен

Переливаем воду в другой сосуд в виде призмы с основанием . Тогда площадь основания

Объем перелитой воды тот же, то есть

поэтому , где – высота уровня воды.

Откуда

Ответ: 2. 

Задача 7.

Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Решение: + показать

1) Высота призмы равна высоте цилиндра.

2) В основании правильной призмы – квадрат.

Диаметр основания цилиндра – это сторона основания призмы (сторона квадрата).

3) Площадь боковой поверхности призмы есть сумма площадей 4-х равных прямоугольников. Измерения таких прямоугольников – это 1  и 2.

Поэтому  

Ответ: 8. 

Задача 8.

Найдите площадь боковой поверхности правильной треугольной призмы, описанной около цилиндра, радиус основания которого равен  , а высота равна 1.

Решение: + показать

1) Высота призмы равна высоте цилиндра.

2) В основании правильной пирамиды – равносторонний треугольник.

Радиус вписанного в него круга (основания цилиндра) ищем из прямоугольного треугольника с углом 30°(помечен на рисунке красным цветом, – в нем катет, прилежащий к углу 30°, есть половина стороны треугольника):

,

где   – cсторона треугольника.

4) Площадь боковой поверхности правильной треугольной призмы – есть сумма площадей  трех равных прямоугольников с измерениями 6 и 1 (высота призмы).

Ответ: 18. 

Задача 9.

Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен  , а высота равна 1.

Решение: + показать

Боковая поверхность правильной шестиугольной призмы составлена из шести равных друг другу прямоугольников с измерениями (сторона основания) и (высота призмы).

Выразим через заданный  :

Правильный шестиугольник составлен из шести равных правильных треугольников (см. рис.).

Высота (радиус вписанной окружности) является и биссектрисой, и медианой.

Из треугольника :

Подставляя известное значение , имеем:

Тогда

Ответ: 1,2. 

Задача 10.

Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 26, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы.

Решение: + показать

Площадь каждой  боковой грани отсеченной призмы вдвое меньше соответствующей площади боковой грани исходной призмы. Поэтому площадь боковой поверхности отсеченной призмы вдвое меньше площади боковой поверхности исходной.

Стало быть, площадь боковой поверхности отсеченной треугольной призмы равна 13.

Ответ: 13. 

Задача 11.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 19,5. Найдите объем исходной призмы.

Решение: + показать

Так как плоскость проведена через среднюю линию основания, то площадь основания отсеченной  призмы меньше площади основания исходной в 4 раза  (основания (как треугольники)) подобны друг другу с коэффициентом подобия 2, значит площади находятся в отношении ).

Высоты призм совпадают.

Поэтому объем исходной призмы в 4 раза больше объема отсеченной призмы, то есть равен

Ответ: 78. 

Задача 12.

Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 8, а боковые ребра равны   и наклонены к плоскости основания под углом 30°.

Решение: + показать

Объем призмы есть где – высота призмы, – площадь основания.

Площадь основания – 6 площадей правильных треугольников со стороной 8:

Высота же есть половина бокового ребра призмы (см. рис.  (высота – катет, противолежащий углу в 30° в прямоугольном треугольнике):

Тогда

Ответ: 576. 

Задача 13.

В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 16 и отстоит от других боковых ребер на 9 и 12. Найдите площадь боковой поверхности этой призмы.

Решение: + показать

Площадь боковой поверхности наклонной призмы есть   где – длина бокового ребра, – периметр перпендикулярного сечения призмы (это сечение – прямоугольный треугольник согласно условию).

В нашем случае , а ( третью сторону сечения находим по т. Пифагора:  ).

Тогда

Ответ: 576. 

Задача 14.

Площадь поверхности правильной треугольной призмы равна 19. Какой будет площадь поверхности призмы, если все ее ребра увеличить в семь раз?

Решение: + показать

Достаточно просто сказать следующее:

Площали поверхностей подобных многогранников находятся в отношении (если коэффициент подобия – ). А при увеличении каждого ребра исходной призмы в 7 раз мы получаем именно призму, подобную исходной.

Поэтому площадь поверхности новой призмы будет в 49 раз больше исходной, то есть будет равняться 931.

Ответ: 931. 

Задача 15.

Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен , а высота равна 3.

Решение:  + показать

1) Площадь боковой поверхности правильной треугольной призмы  есть , где – сторона основания призмы, – высота призмы (или боковое ребро).

2) Высота цилиндра равна высоте призмы.

3) Найдем сторону основания призмы:

О – цент описанной окружности – точка  пересечения медиан (высот, биссектрис треугольника  (основания призмы) ).

По свойству медиан (см. рис.), значит, Итого, высота треугольника равна

Далее по т. Пифагора значит  сторона треугольника .

(Заметим, можно и сразу найти сторону правильного  треугольника через , если знать формулу ).

4) Наконец,

Ответ: 162. 

Время передохнуть немного. –>+ показать

Наглядная иллюстрация пересечения двух множеств :)

Вы можете пройти тест по Задачам №8, призма.

egeMax |

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Печать страницы

Источник: https://egemaximum.ru/prizma/

Призма. Все что нужно знать для подготовки к ЕГЭ по математике

Полная поверхность правильной призмы. Площадь боковой поверхности призмы



Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Привет!

Сейчас я расскажу тебе ВСЕ о призме. Без воды. Только то, что нужно.

Помни о своей цели! Тебе нужно подготовиться к ЕГЭ по математике так чтобы поступить в ВУЗ мечты!

Это самый лучший материал в инете.

Не веришь?

Посмотри отзывы внизу статьи и ты все поймешь… И, кстати, можешь оставить свои.

Ладно, хватит болтать — к делу!

формула объема призмы Необычная формула объёма призмы Объем правильной треугольной призмы Объем правильной четырёхугольной призмы Объем правильной шестиугольной призмы Площадь поверхности призмы А здесь ты можешь скачать весь текст в pdf формате. ПРИЗМА. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ Теперь я хочу услышать тебя!

Определение призмы

  • Призма — многогранник, две грани которого (основания) — равные многоугольники, лежащие в параллельных плоскостях, а боковые грани — параллелограммы.

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

Виды призм

  • Призма, основанием которой является параллелограмм, называется параллелепипедом.
  • Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
  • Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.

Объем и площадь призмы

формула объема призмы:

 ,

где   — площадь основания,

  — высота.

 

Необычная формула объема призмы:

 ,

где   — площадь сечения, перпендикулярного боковому ребру,

  — длина бокового ребра.

Площадь полной поверхности призмы – сумма площадей всех граней.

А теперь подробнее….

Что такое призма

Давай ответим сперва картинками:

Смотри: у призмы сверху и снизу два одинаковых многоугольника – они называются основаниями. Остальные грани называются боковыми.

Плоскости оснований параллельный. Боковые грани – параллелограммы.

Рисуем ещё раз:

А теперь: рёбра.

Смотри: бывают рёбра основания и боковые рёбра.

Важно знать, что:

Все боковые рёбра призмы равны и параллельны.
  • Если в основании призмы лежит треугольник, то призма называется треугольной, если четырёхугольник, то – четырёхугольной и так далее.
  • Бывают и десятиугольные, и двадцатиугольные призмы, но , к счастью, не в твоих задачах.
  • А у тебя будут встречаться чаще всего треугольные, четырёхугольные и шестиугольные призмы.

Высота призмы

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

И ясно, что та же самая высота получится, если опустить перпендикуляр из любой точки на верхней плоскости.

Согласен?

Прямая призма

Если боковые рёбра призмы перпендикулярны основанию, то призма называется прямой.

У прямой призмы:
  • все боковые грани прямоугольники;
  • все сечения проходящие через боковые рёбра – прямоугольники;
  • и даже сечения, проходящие только через одно боковое ребро — прямоугольники.
У прямой призмы высота совпадает с боковым ребром.

Правильная призма

Если боковые рёбра призмы перпендикулярны основанию, а в основании лежит правильный многоугольник, то призма называется правильной.

То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.

Тебе, скорее всего, может встретиться:

1) Правильная треугольная призма – в основании правильный треугольник, боковые грани – прямоугольники.

2) Правильная четырёхугольная призма – это ещё и разновидность прямоугольного параллелепипеда – в основании квадрат, боковые грани – прямоугольники.

3) Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.

формула объема призмы

  –площадь основания

  – высота

Эта формула верна для любой призмы, но если призма прямая, то   «превращается» в боковое ребро. И тогда

– то же самое, что

Необычная формула объёма призмы

Представь себе, есть ещё одна, «перевёрнутая» формула для объёма призмы .

  — площадь сечения, перпендикулярного боковому ребру,

  — длина бокового ребра.

Используется ли эта формула в задачах? Честно говоря, довольно редко, так что можешь ограничиться знанием основной формулы объёма.

Давай теперь для упражнения посчитаем объём самых популярных призм.

Объем правильной треугольной призмы

Пусть дано, что сторона основания равна  , а боковое ребро равно  .

Найдём объём:

Вспомним, как находить площадь правильного треугольника

Подставляем в формулу объёма:

 .

Объем правильной четырёхугольной призмы

Опять дано: сторона основания равна  , боковое ребро равно  .

Ну, площадь квадрата долго искать не надо:

Значит,  .

Объем правильной шестиугольной призмы

Что же такое  ? Как найти?

Смотри: шестиугольник   состоит из шести одинаковых правильных треугольников.

Значит:  

Ну и теперь  .

Площадь поверхности призмы

Площадь боковой поверхности призмы – сумма площадей всех боковых граней.

Есть ли общая формула?

 

Нет, в общем случае нет. Просто нужно искать площади боковых граней и суммировать их.

Площадь полной поверхности призмы – сумма площадей всех граней.

Формулу можно написать для прямой призмы:

Но всё-таки гораздо проще в каждом конкретном случае сложить все площади, чем запоминать дополнительные формулы.

 , где   — периметр основания.

 .

Для примера посчитаем полную поверхность правильной шестиугольной призмы.

Пусть сторона основания равна  , а боковое ребро равно  .

Все боковые грани – прямоугольники. Значит  .

  — это уже выводили при подсчёте объёма.

Итак, получаем:

 .

ПРИЗМА. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Определение

  • Призма — многогранник, две грани которого (основания) — равные многоугольники, лежащие в параллельных плоскостях, а боковые грани — параллелограммы.

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

2. Виды призм:

  • Призма, основанием которой является параллелограмм, называется параллелепипедом.
  • Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
  • Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.

3. Объем и площадь призмы:

  • формула объема призмы:  , где   — площадь основания,   — высота.
  • Необычная формула объема призмы:  , где   — площадь сечения, перпендикулярного боковому ребру,   — длина бокового ребра.
  • Площадь полной поверхности призмы – сумма площадей всех граней.  .

Теперь я хочу услышать тебя!

Я постаралась сжато, без воды рассказать о том, что такое призма.

Что тебе понравилось? Что не понравилось?

Может быть ты нашел ошибку?

Или знаешь другой хороший материал на эту тему? 

Источник: https://youclever.org/book/prizma-1

Треугольная призма все формулы и примеры задач

Полная поверхность правильной призмы. Площадь боковой поверхности призмы

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Определение

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Элементы треугольной призмы

Треугольники ABC и A1B1C1 являются основаниями призмы.

Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы.

Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Прямая треугольная призма

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Наклонная треугольная призма

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

 Объем призмы = площадь основания х высота

или

V=Sосн . h

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

или

Sбок=Pосн.h 

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

так как Sбок=Pосн.h, то получим:

Sполн.пов.=Pосн.h+2Sосн

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы:

Верхнее и нижнее основания призмы – это равные многоугольники.Боковые грани призмы имеют вид параллелограмма.

Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см2, то высота должна быть выражена в сантиметрах, а объем — в см3 . Если площадь основания в мм2, то высота должна быть выражена в мм, а объем в мм3 и т. д.

Пример призмы

В этом примере:— ABC и DEF составляют треугольные основания призмы— ABED, BCFE и ACFD являются прямоугольными боковыми гранями— Боковые края DA, EB и FC соответствуют высоте призмы.

— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.

Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро.

Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2  · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Решение: 

Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k2 = S122 = 4S1.

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Таким образом, искомый объём равен 20.

Источник: https://novstudent.ru/treugolnaya-prizma-vse-formulyi-i-primeryi-zadach/

Призма площадь боковой и полной поверхности призмы. Объём и площадь поверхности правильной четырёхугольной призмы — Мед-Центр Здоровье

Полная поверхность правильной призмы. Площадь боковой поверхности призмы

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях.

Частным случаем является правильная четырёхугольная призма.

Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело. К ним принято относить:

  1. Основы призмы — квадраты LMNO и L₁M₁N₁O₁.
  2. Боковые грани — прямоугольники MM₁L₁L, LL₁O₁O, NN₁O₁O и MM₁N₁N, расположенные под прямым углом к основаниям.
  3. Боковые рёбра — отрезки, расположенные на стыке между двумя боковыми гранями: M₁M, N₁N, O₁O и L₁L. Также выполняют роль высоты (поскольку лежат в параллельной основаниям плоскости). В призме боковые рёбра всегда равны между собой — это одно из важнейших свойств этого геометрического тела.
  4. Диагонали, которые, в свою очередь, подразделяются ещё на 3 категории. К ним относится 4 диагонали основания (MO, N₁L₁), 8 диагоналей боковых граней (ML₁, O₁L) и 4 диагонали призмы, начала и концы которых являются вершинами 2 разных оснований и боковых сторон (MO₁, N₁L).

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости.

Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов).

Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

V = Sосн·h

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

V = a²·h

Если речь идёт о кубе — правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

V = a³

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

Sбок = Pосн·h

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Sбок = 4a·h

Для куба:

Sбок = 4a²

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Sполн = 4a·h + 2a²

Для площади поверхности куба:

Sполн = 6a²

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h);
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²;
  • площадь основания: Sосн = V / h;
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Sдиаг = ah√2

Для вычисления диагонали призмы используется формула:

dприз = √(2a² + h²)

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

Задание 1.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Решение.

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a. В таком случае для первой коробки объём вещества составит:

V₁ = ha² = 10a²

Для второй коробки длина основания составляет 2a, но неизвестна высота уровня песка:

V₂ = h (2a)² = 4ha²

Поскольку V₁ = V₂, можно приравнять выражения:

10a² = 4ha²

После сокращения обеих частей уравнения на a² получается:

10 = 4h

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

Задание 2.

ABCDA₁B₁C₁D₁ — правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Решение.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения — длина, ширина и высота — равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216

Задание 3.

В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Решение.

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м².

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Как найти площадь куба

Источник: //1001student.ru/matematika/obyom-i-ploshhad-poverhnosti-pravilnoj-chetyryohugolnoj-prizmy.html

Правильная четырехугольная призма

Развернуть структуру обучения

структуру обучения

Определение.

Правильная четырехугольная призма – это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро – это общая сторона двух смежных боковых граней

Высота призмы – это отрезок, перпендикулярный основаниям призмы

Диагональ призмы – отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость – плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение – границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) – это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A1B1C1D1 равны и параллельны друг другу
  • Боковые грани AA1D1D, AA1B1B, BB1C1C и CC1D1D, каждая из которых является прямоугольником
  • Боковая поверхность – сумма площадей всех боковых граней призмы
  • Полная поверхность – сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA1, BB1, CC1 и DD1.
  • Диагональ B1D
  • Диагональ основания  BD
  • Диагональное сечение BB1D1D
  • Перпендикулярное сечение A2B2C2D2 .
  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения – прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

При решении задач на тему “правильная четырехугольная призма” подразумевается, что:

Правильная призма — призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат. (см. выше свойства правильной четырехугольной призмы)

Примечание. Это часть урока с задачами по геометрии (раздел стереометрия –  призма). Здесь размещены задачи, которые вызывают трудности при решении.

Если Вам необходимо решить задачу по геометрии, которой здесь нет – пишите об этом в форумеДля обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

   В правильной четырёхугольной призме площадь основания 144 см2, а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение.

Правильный четырехугольник – это квадрат.

Соответственно, сторона основания будет равна

√144 = 12 см. Откуда диагональ основания правильной прямоугольной призмы будет равна √( 122 + 122 ) = √288 = 12√2 Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:

√( ( 12√2 )2 + 142 ) = 22 см

Ответ: 22 см

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение.

Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

a2 + a2 = 52

2a2 = 25 a = √12,5 Высота боковой грани (обозначим как h) тогда будет равна:

h2 + 12,5 = 42

h2 + 12,5 = 16
h2 = 3,5 h = √3,5 Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a2 + 4ah

S = 25 + 4√12,5 * √3,5 S = 25 + 4√43,75 S = 25 + 4√(175/4) S = 25 + 4√(7*25/4)

S = 25 + 10√7 ≈ 51,46 см2 .

Ответ: 25 + 10√7 ≈ 51,46 см2 .

15306.1214  

 Прямая призма | Описание курса | Диагональное сечение правильной призмы 

Источник: //profmeter.com.ua/communication/learning/course/course7/lesson201/

Источник: https://medcentrzdorove.ru/prizma-ploshhad-bokovoj-i-polnoj-pover.html

Объём и площадь поверхности правильной четырёхугольной призмы

Полная поверхность правильной призмы. Площадь боковой поверхности призмы

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях.

Частным случаем является правильная четырёхугольная призма.

Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Самая удобная и увлекательная подготовка к ЕГЭ

Полная поверхность правильной призмы. Площадь боковой поверхности призмы

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.

Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

$С_1Н$ — высота

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

$P_{осн}$ — периметр основания;

$S_{осн}$ — площадь основания;

$S_{бок}$ — площадь боковой поверхности;

$S_{п.п}$ — площадь полной поверхности;

$h$ — высота призмы.

$S_{бок}=P_{осн}·h$

$S_{п.п}=S_{бок}+2S_{осн}$

$V=S_{осн}·h$

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник

  1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ — это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ — радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.

$S=a·b$, где $а$ и $b$ — смежные стороны.

2. Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба

$S=a2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

3. Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

1. Для равностороннего треугольника $S={a2√3}/{4}$, где $а$ — длина стороны.

2. Квадрат

$S=a2$, где $а$ — сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a2√3}/{4}={3·a2√3}/{2}$, где $а$ — сторона правильного шестиугольника.

Пример:

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.

Решение:

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

$S_{п.п}=S_{бок}+2S_{осн}=P_{осн}·h+2S_{ромба}$

В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.

$АВ=√{52+122}=√{25+144}=√{169}=13$

$Р=13·4=52$

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

$S_{основания}={d_1·d_2}/{2}={10·24}/{2}=120$

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

$S_{п.п}=P_{осн}·h+2S_{ромба}=52·20+2·120=1040+240=1280$

Ответ: $1280$

Цилиндр — это та же призма, в основании которой лежит круг.

$S_{бок}=P_{осн}·h=2πRh$

$S_{п.п}=S_{бок}+2S_{осн}=2πRh+2πR2=2πR(h+R)$

$V=S_{осн}·h=πR2 h$

Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k3$ раз.

Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ — средняя линия, так как соединяет середины соседних сторон.

$MN {//} AC, MN = {AC}/{2}$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC2+BC2=AB2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$${1}/{2}$${√2}/{2}$${√3}/{2}$
$cosα$${√3}/{2}$${√2}/{2}$${1}/{2}$
$tgα$${√3}/{3}$$1$$√3$
$ctgα$$√3$$1$${√3}/{3}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sinα}={b}/{sinβ}={c}/{sinγ}=2R$, где $R$ — радиус описанной около треугольника окружности.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a2=b2+c2-2·b·c·cosα;$

$b2=a2+c2-2·a·c·cos⁡β;$

$c2=b2+a2-2·b·a·cosγ.$

Источник: https://examer.ru/ege_po_matematike/teoriya/pizma

Вопросы адвокату
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: