Окружность. Касательная к окружности

Содержание
  1. Касательная к окружности
  2. Доказательство
  3. Советуем посмотреть:
  4. Правило встречается в следующих упражнениях:
  5. Касательные, касающиеся окружности
  6. 1. Определения и основная теорема
  7. 2. Угол между касательной и хордой
  8. 3. Равенство отрезков касательных
  9. 4. Общая касательная к двум окружностям
  10. 5. Касающиеся окружности
  11. КАСАТЕЛЬНЫЕ, КАСАЮЩИЕСЯ ОКРУЖНОСТИ. КОРОТКО О ГЛАВНОМ
  12. ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!
  13.  
  14. Касательная к окружности — свойства, теорема и уравнение
  15. Построение касательных
  16. Основные свойства
  17. Частные случаи
  18. Доказательства утверждений
  19. Пример решения задачи
  20. Окружность. Длина окружности. Касательная, дуга
  21. Касательная к окружности
  22. Углы в окружности
  23. Вписанная окружность
  24. Описанная окружность
  25. Теорема Птолемея
  26. Геометрия. Опорный конспект 1. Окружности — УчительPRO
  27. 1. Касательная. Свойство касательной.
  28. 2. Признак касательной.
  29. 3. Построение касательной циркулем и линейкой.
  30. 4. Свойство касательных, проведенных из одной точки к окружности.
  31. 5. Свойство окружностей, вписанных в угол.
  32. 6. Взаимное расположение двух окружностей.
  33. 7. Длина отрезка общей внешней касательной.
  34. 8. Центральный угол. Градусная мера дуги. Вписанный угол.
  35. 9. Свойство вписанного угла.
  36. 10. Вписанные углы, опирающиеся на одну и ту же дугу.
  37. 11. Вписанный угол, опирающийся на диаметр.
  38. 12. Угол между касательной и хордой.
  39. 13. Угол между двумя пересекающимися хордами.
  40. 14. Угол: а) между двумя секущими, б) между касательной и секущей, в) между двумя касательными.
  41. 15. Свойство отрезков пересекающихся хорд.
  42. 16. Свойство касательной и секущей, проведенных из одной точки к окружности.
  43. ЭТО НУЖНО ЗНАТЬ !

Касательная к окружности

Окружность. Касательная к окружности

Касательная к окружности — прямая, имеющая с окружностью одну общую точку, которая называется точкой касания прямой и окружности. На рисунке 1 прямая — касательная к окружности, точка Н — точка касания прямой и окружности с центром в точке О.

Доказательство

Дано: — касательная к окружности с центром в точке О, Н — точка касания (Рис. 2).

Доказать:ОН.

Доказательство:

Предположим, что ОН. Тогда радиус ОН является наклонной к прямой .

При этом перпендикуляр, проведенный из точки О к прямой , меньше наклоннойОН, тогда расстояние от центра О окружности до прямой меньше радиуса.

Следовательно прямая и окружность будут иметь две общие точки, что противоречит условию: прямая — касательная. Поэтому наше предположение неверно, значит, ОН . Теорема доказана.

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Советуем посмотреть:

Взаимное расположение прямой и окружности

Градусная мера дуги окружности

Теорема о вписанном угле

Свойство биссектрисы угла

Свойства серединного перпендикуляра к отрезку

Теорема о пересечении высот треугольника

Вписанная окружность

Описанная окружность

Окружность

Правило встречается в следующих упражнениях:

7 класс

Задание 634, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 648, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 663, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 664, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 677, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 713, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 714, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 724, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 735, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1077, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

© budu5.com, 2020

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/3510

Касательные, касающиеся окружности

Окружность. Касательная к окружности



Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

1. Определения и основная теорема

В обычной жизни ты очень хорошо представляешь себе, что значит слово «коснуться». И вот представь себе, в математике тоже существует такое понятие. В этой теме мы разберёмся с выражениями «прямая касается окружности» и «две окружности касаются».

Итак.

Прямая касается окружности, если имеет с ней ровно одну общую точку.

Такая прямая называется касательной к данной окружности.

Посмотри-ка внимательно: очень похоже на жизнь, не правда ли? Прямая на картинке лишь чуть-чуть дотрагивается до окружности, касается ее.

Ну вот, и точно так же:

Две окружности касаются, если имеют ровно одну общую точку.

Что же тебе нужно знать о касательных и касающихся окружности?

Самая важная теорема гласит, что:

Радиус, проведённый в точку касания, перпендикулярен касательной.

Запомни это прямо как таблицу умножения! Все остальные факты о касательных и касающихся окружностях основаны именно на этой теореме.

Доказывать её мы здесь не будем (можешь заглянуть в следующие уровни теории), а вот как эта самая важная теорема работает, увидим сейчас несколько раз.

2. Угол между касательной и хордой

Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла.

Прежде всего: как это понимать? Подробнее о том, что такое «градусная мера дуги» написано в теме «Окружность. Вписанный угол».

Здесь напомним только, что в дуге столько же градусов, сколько в центральном угле, заключающем эту дугу.То есть «градусная мера дуги» — это «сколько градусов в центральном угле» — и всё!

Ну вот, как говорит Карлсон, «продолжаем разговор».

Рисуем ещё раз теорему об угле между касательной и хордой.

Смотри, хорда   разбила окружность на две дуги. Одна дуга находится ВНУТРИ угла  , а другая дуга – внутри угла  .

И теорема об угле между касательной и хордой говорит, что   равен ПОЛОВИНЕ угла  ,   равен ПОЛОВИНЕ большего (на рисунке — зеленого) угла  .

При чем же тут тот факт, что радиус, проведенный в точку касания, перпендикулярен касательной?

Сейчас и увидим.   – радиус,   – касательная.

Значит ,  . Поэтому: .Но   (  и   — радиусы) .

И осталось вспомнить, что сумма углов треугольника   равна  .

Пишем:

Короче:

Здорово, правда? И самым главным оказалось то, что  .

3. Равенство отрезков касательных

Задумывался ли ты над вопросом «а сколько касательных можно провести из одной точки к одной окружности»? Вот, представь себе, ровно две! Вот так:

А ещё более удивительный факт состоит в том, что:

Отрезки касательных, проведённых из одной точки к одной окружности, равны.

То есть, на нашем рисунке,  .

И для этого факта тоже самым главным является то, что радиус, проведённый в точку касания, перпендикулярен касательной.

Вот, убедись: проведём радиусы   и   и соединим   и  .

  –радиус.   – касательная, значит, . Ну, и так же  .

Получилось два прямоугольных треугольника   и  , у которых:

  •   — равные катеты
  •   — общая гипотенуза

(заглядываем в тему «Прямоугольный треугольник», если не помним, когда, бывают равны прямоугольные треугольники).

Но раз   то .УРА!

И ещё раз повторим – этот факт тоже очень важный:

Отрезки касательных, проведённых из одной точки, – равны.

И есть ещё один факт, который мы здесь не будем доказывать, но он может оказаться тебе полезен при решении задач.

Для любой прямой  , пересекающей окружность, , где  — отрезок касательной.

Хитроумными словами об этом говорят так:

«квадрат длины отрезка касательной равен произведению секущей на её внешнюю часть».

Страшно? Не бойся, помни только, что в буквах это:

4. Общая касательная к двум окружностям

Прямая, которая касается двух окружностей, называется их общей касательной.

Общие касательные бывают внешние и внутренние.

Смотри на картинки.

Две внутренние общие касательные.
Две внешние общие касательные.

А всего – четыре — не больше, но может быть меньше.

Вот так:

Есть только две внешние общие касательные.
Или так: одна «внутренняя» и две «внешних».

А может быть вообще так:

только одна общая касательная:

И снова факты:

  1. Длины отрезков двух внутренних общих касательных равны
  2. Длины отрезков двух внешних общих касательных равны.

НО! При этом:внешние и внутренние касательные – разные! (а некоторых, может, и вообще нет…)

5. Касающиеся окружности

Касание окружностей бывает внешним и внутренним.

Вот такая картинка называется

«окружности касаются внешним образом».

А вот такая картинка называется

«окружности касаются внутренним образом».

Что же самое главное нужно знать?

Если две окружности касаются, то точка касания лежит на прямой, соединяющей центры.Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей.

Если тебе показалось слишком длинно – посмотри картинку. Может быть ещё так:

Ура, теперь ты полностью вооружён на борьбу с касательными – дерзай!

КАСАТЕЛЬНЫЕ, КАСАЮЩИЕСЯ ОКРУЖНОСТИ. КОРОТКО О ГЛАВНОМ

Касательная — прямая, которая имеет с окружностью только одну общую точку.

  • Касательная окружности перпендикулярна радиусу, проведённому в точку касания.
  • Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла:  , где
  •   — касательная,
  •   — хорда,
  •   — угол, внутри которого находится дуга  .
  • Отрезки касательных, проведённых из одной точки к одной окружности, равны:  
  • Углы, образованные касательными, проведёнными из одной точки, и прямой, проходящей через центр окружности и эту точку, равны:  .
  • Секущая — прямая, которая пересекает окружность в двух различных точках:   и  .
  • Для любой прямой  , пересекающей окружность:  ,где  — отрезок касательной.

Касание окружностей: если две окружности касаются, то точка касания лежит на прямой, соединяющей их центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей:

Внешнее касание Внутреннее касание 

Для двух окружностей с центрами   и  , и радиусами   и  :

  • при внешнем касании:  ;
  • при внутреннем касании:  .

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц», 

А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

 

Источник: https://youclever.org/book/kasatelnye-kasayushhiesya-okruzhnosti-1

Касательная к окружности — свойства, теорема и уравнение

Окружность. Касательная к окружности

Важно знать терминологию, соотношения и теоремы для решения задач этого класса. Касательной к окружности называется прямая, которая имеет с ней только одну точку соприкосновения. Прямая — это линия, не имеющая границ, т. е. она ничем не ограничена. Окружностью называется геометрическое место точек, удаленных от центра на одинаковые расстояния.

Следует отметить, что касательные бывают внешними и внутренними. Внешней называет прямая линия, проходящая с внешней стороны окружности.

Внутренние касательные пересекают отрезок, который соединяет центры двух окружностей. Последний тип прямых не существует, когда два круга пересекаются.

Касательные нужно уметь правильно строить, поскольку от этого зависит правильность решения задачи.

Построение касательных

Для построения касательной к окружности следует на последней отметить произвольную точку. Затем необходимо через нее провести прямую. Нужно отметить, что у круга может быть несколько таких прямых. Когда даны две окружности, тогда можно проводить не только внешние, но и внутренние. Существует определенный алгоритм, по которому можно построить первый тип:

  1. Начертить 2 окружности с центрами в точках О1 и О2. При этом должно соблюдаться условие r1 > r2, где r1 и r2 — радиусы I и II соответственно.
  2. Нарисовать III окружность с центром в О1 и радиусом r3 = r1 — r2.
  3. Провести 2 касательные из точки О2 к III. Они параллельны искомым, поскольку радиусы I и II уменьшаются на r2.

Существует более простая модель построения таких прямых. Для этого следует начертить один круг, а затем отметить две произвольные точки на его противоположных сторонах.

Далее начертить II круг, превышающий I по радиусу. Отметить на нем точки, воспользовавшись подобием, т. е. они должны быть в тех же местах, что и на I.

Затем провести прямые, которые должны соприкасаться с I и II кругами только в одной точке.

Для построения внутренних касательных существует определенная методика. В интернете можно найти много информации. В одних источниках алгоритм построения является сложным, а в других — простым. Однако есть один метод, позволяющий осуществить данную операцию. Специалисты описали его на «понятном» языке для новичков. Суть методики заключается в следующем:

  1. Необходимо построить два круга, которые не пересекаются, с радиусами r1 и r2. Расстояния между ними должно составлять r1 + r2.
  2. Соединить их центры (середины) отрезком.
  3. Отметить на нем среднюю точку, которая делит его на две равные части.
  4. Через точку, полученную на третьем шаге методики, провести прямую. Она должна иметь только одну точку соприкосновения с I и II окружностями.
  5. Аналогично провести еще одну прямую.
  6. Искомые прямые являются внутренними касательными.

Далее нужно рассмотреть некоторые свойства, на основании которых можно решать задачи и доказывать геометрические тождества.

Основные свойства

Свойства — утверждения, полученные в результате доказательства теорем о касательной к окружности. Первые нет необходимости доказывать, поскольку об этом уже позаботились математики. Они выделяют всего 4 свойства касательных к окружности:

  1. Если провести из одной точки две касательные к некоторой окружности, то отрезки, лежащие на них, будут равны. Искомый угол будет делиться радиусом пополам.
  2. Любая касательная и радиус, проведенный к ее точке, образуют прямой угол. Справедливо и обратное утверждение: радиус, который проведен в точку касания, перпендикулярен данной прямой.
  3. Вся секущая, умноженная на свою внешнюю часть, равна квадрату расстояния касательной, которая проведена из общей с ней точки.
  4. Образованный угол между касательной и секущей, эквивалентен градусной мере угла, который опирается на образованную хорду.

Для рассмотрения I свойства необходимо начертить окружность с центром О1. Затем нужно отметить точку М вне окружности. Из М провести одну прямую, которая соприкасается с кругом в точке А. Такую же операцию следует проделать и для другой касательной. Точку соприкосновения назвать В. Отрезки АМ и ВМ равны между собой.

Если провести радиусы к точкам А и В, то можно сделать вывод, что углы являются прямыми. Чтобы понять третье свойство, необходимо начертить окружность и отметить некоторую точку М за ее пределами. После этого следует из искомой точки провести секущую и касательную.

Первой называется прямая, проходящая через окружность и пересекающая ее в двух точках. Для касательной точку соприкосновения необходимо обозначить А. Тогда секущая пересекает круг в точках В (ближняя) и С (дальняя).

В результате этого получается такое соотношение: АМ 2 = АВ * МС.

Когда для произвольной окружности существуют касательная и секущая, тогда между ними образуется некоторый угол.

Хорда, полученная в результате прохождения через окружность, образует также угол. Он опирается на искомую хорду и является вписанным. Следовательно, по свойству градусные меры углов равны между собой. Далее нужно разобрать частные случаи, на основании которых можно сделать вывод о количестве касательных.

Когда окружность вписана в ромб, тогда их точки касания нужно рассматривать по первому свойству. Радиус окружности можно найти по следующим формулам:

  1. Через диагонали (d1, d2) и сторону (a): r = (d1 * d2) / 4а.
  2. Только по диагоналям: r = (d1 * d2) / [(d1)2 + (d2)2](½).

Следует отметить, что у ромба две диагонали. Они различаются по размеру. Одна из них больше другой (d1 > d2).

Частные случаи

В некоторых задачах нужно определить количество касательных у двух окружностей. Можно выполнить ряд сложных и трудоемких доказательств. В результате этого будет потрачено много времени, а можно воспользоваться уже готовыми дополнительными свойствами:

  1. Четыре касательных: круги не соприкасаются, т. е. d > r1 + r2 (значение диаметра больше суммы радиусов r1 и r2).
  2. Две общие внешние и одна внутренняя: окружности соприкасаются только в одной точке (d = r1 + r2).
  3. Только две внешние: пересечение окружностей в двух точках (|r1 — r2| < d < r1 + r2).
  4. Одна общая внешняя: окружности касаются внутри друг друга (d = |r1 — r2|).
  5. Отсутствуют: один круг находится внутри другого (d < |r1 — r2|).

В последнем случае любая касательная будет являться секущей для другой окружности. Существует еще одно положение, когда окружности совпадают. Тогда любая касательная считается общей. В высшей математике разбирается также «отрицательный» радиус. Тогда вышеперечисленные свойства можно править следующим образом:

  1. Нет касательных: окружности не соприкасаются, и для них выполняется условие d < - (r1 + r2).
  2. Две внутренние (общие) и одна внешняя: круги соприкасаются в одной точке (d = -r1 — r2).
  3. Одна пара внутренних: пересечение в 2 точках (|r1 — r2| > d > — r1 — r2).
  4. Внутренняя общая (одна): соприкасаются внутри (d = |r2 — r1|).
  5. Четыре: при d > |r1 — r2|.

Когда заданы окружности, радиус одной из которых равен 0, тогда «нулевой» круг эквивалентен двойной точке. Прямая является двойной и проходит через эту точку. В этом случае математики определяют всего две внешних. Если r1 = r2 = 0, то всего 4 внешних общих касательных. Далее для решения задач нужно разобрать доказательства некоторых свойств.

Доказательства утверждений

Очень важно знать доказательства некоторых свойств и теорем, поскольку одним из типов задач считаются упражнения повышенной сложности, требующие логических расчетов в общем виде. Например, нужно доказать, что касательная образует с радиусом, проведенным к точке касания, прямой угол. Существует тип доказательства от противного.

Для этого следует предположить, что искомый угол не равен 90 градусам. Пусть дана некоторая касательная р. Она имеет с кругом общую точку А. Нужно провести к ней перпендикуляр (радиус). Далее нужно провести из центра О отрезок ОВ на р.

Образуется прямоугольный треугольник АВО с гипотенузой ОВ. Если опираться на утверждение от противного, то гипотенуза будет меньше катета (d < r). Однако радиус не может быть больше диаметра, поскольку он рассчитывается по следующей формуле: d = 2 * r.

Следовательно, утверждение доказано.

Аналогично доказывается и обратное свойство. Его формулировка имеет такой вид: прямая, проходящая под прямым углом через точку, которая образована радиусом, является касательной.

В этом случае можно доказывать не от противного. Расстояние от прямой до центра окружности эквивалентно некоторой величине и является радиусом.

Из определения следует, что прямая и окружность имеют общую точку, и только одну. Следовательно, она и есть касательная.

Доказательство об отрезках, проведенных из одной точки, тоже нужно разобрать, поскольку такой прием применяется в решении сложных задач. Отрезки равны между собой и образуют с прямой, проведенной к центру круга, эквивалентные углы.

Следует выполнить построение окружности с центром Р. Далее нужно обозначить точку А за ее пределами и провести из нее лучи-касательные к искомой окружности. Они образуют на круге точки А и В. Кроме того, следует доказать равенство углов ОАВ и САО. При построении образовалось два треугольника ОВА и ОСА. Фигуры являются прямоугольными на основании свойства о касательной и радиусе.

Далее необходимо доказать равенство фигур ОВА и ОСА. Это сделать довольно просто: гипотенуза — общая, катеты ОВ и ОС равны (радиусы) и углы АВО = АСО = 90.

Следовательно, они равны по первому признаку, а также эквивалентны друг другу стороны АВ и АС. Кроме того, угол ОАВ = САО. Утверждение доказано. Гипотенуза является также и биссектрисой.

В некоторых источниках можно встретить доказательство равенства тангенсов углов.

Пример решения задачи

Нужно составить уравнения касательных к окружности (описанной графиком функции х 2 + y 2 = 2x + 6y + 19), проходящих через координаты х =0 у= -14. Для решения задачи следует действовать по такому алгоритму:

  1. Перенести все слагаемые, кроме 19, в левую сторону: х 2 + y 2 — 2x — 6y = 19.
  2. Выделить полный квадрат для окончательной записи уравнения окружности: х 2 — 2x + 1 — 1 + y 2 — 6y +9 — 9 = (х — 1)2 + (y — 3)2 = 29.
  3. Уравнение прямой, проходящей через (0;-14) в общем виде: y — (-14) = k * (x — 0) или у = кх — 14.
  4. Составить систему уравнений: (х — 1)2 + (y — 3)2 = 29 и у = кх — 14.
  5. Подставить второе в первое: (х — 1)2 + (кх — 14 — 3)2 = 29.
  6. Упростить выражение: (х — 1)2 + (кх — 14 — 3)2 — 29 = х 2 — 2x + 1 +k 2 * x 2 — 34kx + 289 — 29 = (1 + k 2 ) * x 2 — 2 * (17k + 1) + 261.
  7. Решением уравнения должен быть один корень: D/4 = 0.
  8. Упростить тождество: D/4 = (-(17k + 1))2 — 261 (1 + k 2 ) = 289k 2 + 34k + 1 — 261 — 261k 2 = 28k 2 + 34k — 260 = 0.
  9. Найти значение D: 17 2 — 28 * (-260) = 289 + 7280 = 7569.
  10. Первый коэффициент к1 = (-17 — 87) / 28 = -26/7.
  11. Коэффициент к2 = (-17 + 87) / 28 = 5/2.
  12. Записать уравнения прямых с учетом к1 и к2: у1 = (-26/7) * х — 14 (26х + 7у + 98 = 0) и у2 = (5/2) * х — 14 (5х — 2у — 28 = 0).

Следует отметить, что уравнение окружности с радиусом, равным единице, описывается функцией x2 + y 2 = 1. Эта запись применяется для решения задач в общем виде. Прямая — функция, описанная прямой пропорциональностью у = кх + b.

Чтобы связать окружность и касательные, нужно составить систему уравнений. Этот математический ход объясняется тем, что у функций должны быть общие решения (точка на окружности).

После решения можно выполнить проверочные вычисления, подставив корни в систему.

Таким образом, для решения задач об окружности и касательной следует знать общие понятия, а также основные свойства и теоремы.

Источник: https://nauka.club/matematika/geometriya/kasateln%D0%B0y%D0%B0-k-okruzhnosti.html

Окружность. Длина окружности. Касательная, дуга

Окружность. Касательная к окружности

Окружность — это множество точек, которое располагается на одинаковом расстоянии от ее центра, представленного точкой.

Для любой точки L, лежащей на окружности, действует равенство OL=R. (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой.

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D). Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга: S=\pi R{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD. Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha {\circ}}{180{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N, то произведения отрезков хорд, разделенные точкой N, равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей.

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha {\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90 {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

\angle ADB = \angle AEB = \angle A

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180 {\circ}.

\angle ADB + \angle AKB = 180 {\circ}

\angle ADB = \angle AEB = \angle A

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left ( \cup DmC + \cup AlB \right )

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD — \angle ACB = \frac{1}{2} \left ( \cup DmC — \cup AlB \right )

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr,

где:

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p},

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника.

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3-мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180{ \circ}.

\angle A + \angle C = \angle B + \angle D = 180 {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

где:

a, b, c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Источник: https://academyege.ru/page/okruzhnost-i-krug.html

Геометрия. Опорный конспект 1. Окружности — УчительPRO

Окружность. Касательная к окружности

Наглядная геометрия 9 класс. Опорный конспект 1. Окружности

На плоскости прямая может не иметь с окружностью общих точек, может иметь с ней одну общую точку — в этом случае она называется касательной, и может пересекать окружность в двух точках — такая прямая называется секущей.

Других вариантов взаимного расположения прямой и окружности нет. Вариантов взаимного расположения двух окружностей больше — 5, поскольку одна из окружностей может располагаться как снаружи, так и внутри другой окружности.

Углы, связанные с окружностью, имеют определенные названия. Угол с вершиной в центре окружности называется центральным углом. Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. Оказывается, что вписанный угол равен 1/2 соответствующего центрального угла.

В этом конспекте мы узнаем, что дуга окружности может измеряться в градусах. Мы научимся вычислять угол между пересекающимися хордами, между секущими, между касательной и хордой, имеющими общую точку. Еще мы выясним, как связаны отрезки пересекающихся хорд, а также отрезок касательной и отрезки секущей, проведенных из одной точки к окружности.

1. Касательная. Свойство касательной.

Касательной называется прямая, которая имеет единственную общую точку с окружностью.

Теорема (свойство касательной). Радиус, проведенный в точку касания, перпендикулярен касательной.

Доказательство. Дана касательная. Она имеет единственную общую точку с окружностью. Другие точки прямой лежат вне окружности и поэтому дальше от центра (расстояние до них больше радиуса). Значит, длина радиуса, проведенного в точку касания, — это КРАТЧАЙШЕЕ расстояние от центра до касательной. А кратчайшее расстояние измеряется длиной перпендикуляра.

2. Признак касательной.

Теорема (признак касательной). Прямая, перпендикулярная радиусу в конечной его точке на окружности, является касательной.

Доказательство. (Все рассуждения проводятся как в предыдущей теореме, только в обратном порядке.)

Радиус перпендикулярен к прямой (она еще не касательная!). Длина перпендикуляра — это КРАТЧАЙШЕЕ расстояние от центра до прямой. Значит, другие точки прямой лежат дальше от центра. Так как расстояние до них больше радиуса, то все они лежат вне окружности и прямая имеет единственную общую точку с окружностью. А такая прямая является касательной.

3. Построение касательной циркулем и линейкой.

Построение касательной циркулем и линейкой. Соединяем данную точку с центром окружности. На полученном отрезке как на диаметре строим окружность, которая пересекает данную. Через данную точку и точку пересечения окружностей проводим прямую, которая и будет касательной.

Доказательство. Так как угол с вершиной на окружности, опирающийся на диаметр, — прямой (доказано нами в 7 классе), то построенная прямая проходит через точку на окружности перпендикулярно радиусу, проведенному в эту точку. Она является касательной по признаку касательной.

Исследование. Из данной точки вне окружности можно провести две касательных. Задача имеет два решения.

4. Свойство касательных, проведенных из одной точки к окружности.

Теорема. Отрезки касательных, проведенных из одной точки к окружности, равны между собой.

Доказательство. Соединим данную точку с центром окружности. Радиусы, проведенные в точки касания, перпендикулярны касательным. Прямоугольные треугольники равны по катету и общей гипотенузе. Отсюда следует равенство отрезков касательных.

5. Свойство окружностей, вписанных в угол.

Теорема. Центр окружности, вписанной в угол, лежит на биссектрисе угла.

Доказательство. Опустив радиусы в точки касания, получим, что центр окружности равноудален от сторон угла. А биссектриса — это геометрическое место точек, равноудаленных от сторон угла (доказано нами в 7 классе).

6. Взаимное расположение двух окружностей.

R и r — радиусы окружностей, d — расстояние между ними. 1) d > R + r — окружности не пересекаются и расположены внешним образом; 2) d = R + r — касаются внешним образом — одна общая точка; 3) R – r < d < R + r — пересекаются; 4) d = R – r — касаются внутренним образом; 5) d < R – r — не пересекаются и одна расположена внутри другой (концентрические — если центры совпадают).

7. Длина отрезка общей внешней касательной.

Задача. Окружности с радиусами R и r касаются внешним образом. Найти отрезок общей внешней касательной, заключенный между точками касания.

Решение. Проведем радиусы в точки касания. Они перпендикулярны касательной. Из центра меньшей окружности проведем прямую, параллельную касательной. Получим прямоугольник (три угла четырехугольника — прямые).

Две его стороны равны радиусу меньшей окружности, две другие — искомому отрезку касательной. В прямоугольном треугольнике гипотенуза равна R + r, а катет равен R – r.

Ho теореме Пифагора находим второй катет. Искомый отрезок

8. Центральный угол. Градусная мера дуги. Вписанный угол.

Центральным называется угол с вершиной в центре окружности. Градусная мера центрального угла равна градусной мере дуги, на которую он опирается. (Иногда говорят просто: центральный угол равен дуге, на которую он опирается, имея в виду их градусные меры.) Полуокружность содержит 180°, окружность — 360°.

Вписанным называется угол, вершина которого лежит на окружности, а стороны пересекают окружность. Центральный и вписанный углы соответствующие, если они опираются на одну и ту же дугу окружности, которая заключена внутри угла.

9. Свойство вписанного угла.

Теорема. Вписанный угол равен половине дуги, на которую он опирается, или половине соответствующего центрального угла.

Доказательство. Случай 1. Сторона вписанного угла проходит через диаметр. Угол АОС равен сумме углов 1 и 2 как внешний. Но ΔАОВ — равнобедренный (ОА = ОВ как радиусы). Поэтому углы 1 и 2 равны. Вписанный угол 1 равен половине центрального угла АОС, а значит, и половине дуги АС.

Случай 2. Стороны угла лежат по разные стороны от центра. Проведем диаметр ВК. Углы АВК и СВК равны половине дуг АК и СК. Угол АВС равен полусумме этих дуг, т. е. половине дуги АС.

Случай 3. Стороны угла лежат по одну сторону от центра. Проведем диаметр ВК. Углы АВК и СВК равны половине дуг АК и СК. Угол АВС равен полуразности этих дуг, т. е. половине дуги АС.

10. Вписанные углы, опирающиеся на одну и ту же дугу.

Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Доказательство. Каждый из этих углов равен половине их общей дуги.

11. Вписанный угол, опирающийся на диаметр.

Следствие 2. Вписанный угол, опирающийся на диаметр, — прямой, и, наоборот, если вписанный угол прямой, то он опирается на диаметр.

Доказательство. Если вписанный угол опирается на диаметр, то соответствующий центральный угол — развернутый, а вписанный угол равен его половине, т. е. 90°.

Если вписанный угол — прямой, то соответствующий центральный угол равен 180°, т. е. он — развернутый. Поэтому прямой вписанный угол опирается на диаметр.

12. Угол между касательной и хордой.

Теорема. Угол между касательной и хордой равен половине дуги, заключенной внутри угла.

Доказательство. ∠1 и ∠2 дополняют ∠3 до 90°. Поэтому ∠1 = ∠2, a ∠2 равен половине центрального угла, т. е. половине дуги а.

13. Угол между двумя пересекающимися хордами.

Теорема. Угол между пересекающимися хордами равен полусумме дуг, заключенных внутри данного и внутри вертикального ему угла.

Доказательство. Соединим концы хорд. ∠1 — внешний. Тогда

14. Угол: а) между двумя секущими, б) между касательной и секущей,
в) между двумя касательными.

Теорема. Угол между двумя секущими, проходящими через одну точку вне окружности, равен полуразности дуг, заключенных внутри угла.

Доказательство. Соединим первую точку пересечения первой секущей и окружности со второй точкой пересечения второй секущей и окружности. ∠3 = ∠1 + ∠2 как внешний. Тогда

Доказательство не изменится, если секущая займет крайнее положение касательной. Поэтому

  • угол между касательной и секущей равен полуразности дуг, заключенных внутри угла,
  • угол между касательными равен полуразности дуг, заключенных внутри угла.

15. Свойство отрезков пересекающихся хорд.

Теорема. Произведения отрезков пересекающихся хорд равны между собой.

Доказательство. Соединим концы хорд. Из подобия треугольников по двум углам (равны вертикальные углы и равны вписанные углы, опирающиеся на одну и ту же дугу) следует: a/n = m/b, ab = mn.

16. Свойство касательной и секущей, проведенных из одной точки к окружности.

Теорема. Квадрат отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть.

Доказательство. Треугольники со сторонами а, x и а, у подобны по двум углам (один угол общий и закрашенные углы измеряются половиной своей дуги). Из подобия следует, что a/y = x/a, а2 = ху.

Следствие. Для всех секущих, проведенных из одной точки, произведения всего отрезка секущей на его внешнюю часть равны между собой. (Все произведения равны квадрату отрезка общей касательной, проведенной из той же точки.)

ЭТО НУЖНО ЗНАТЬ !

Это конспект по геометрии в 9 классе «Опорный конспект 1. Окружности». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D1%8B%D0%B9-%D0%BA%D0%BE%D0%BD%D1%81%D0%BF%D0%B5%D0%BA%D1%82-1-%D0%BE%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8/

Вопросы адвокату
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: