Как у дроби выделить целую часть правило. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

Содержание
  1. Смешанное число
  2. Советуем посмотреть:
  3. Правило встречается в следующих упражнениях:
  4. Смешанные числа — сложение, вычитание и умножение дробей с разными знаменателям
  5. Что такое смешанное число
  6. Как представить смешанное число в виде неправильной дроби
  7. Как выделить целую часть неправильной дроби
  8. Как перевести смешанную дробь в десятичную
  9. Как сократить смешанную дробь
  10. Сложение смешанных чисел
  11. Вычитание смешанных чисел
  12. Как умножать смешанные числа
  13. Заключение
  14. Как выделить целую часть числа из дроби. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно
  15. Перевод смешанного числа в неправильную дробь
  16. Выделение целой части из неправильной дроби
  17. Сложение смешанного числа и натурального числа
  18. Сложение двух смешанных чисел
  19. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно, как перевести неправильную дробь в правильную
  20. Понятие смешанного числа
  21. Как соотносятся между собой неправильные дроби и смешанные числа
  22. Как перевести смешанное число в неправильную дробь
  23. Как выделить из неправильной дроби целую часть
  24. Смешанная дробь. Действия со смешанными дробями
  25. Фактически такие дроби представляют собой сумму целого числа и дроби, то есть между целой и дробной частью стоит знак «плюс» (а не «умножить»)
  26. Чтобы преобразовать смешанную дробь в неправильную нужно целую часть умножить на знаменатель дробной и прибавить к результату числитель — получиться числитель неправильной дроби. Знаменатель при этом не меняется. То есть, \(a\)\(\frac{m}{n}\)\(=\)\(\frac{a·n + m}{n}\).
  27. Чтобы преобразовать неправильную дробь в смешанную, в ней нужно выделить целую часть
  28. Чтобы преобразовать смешанную дробь в десятичную, нужно в дробной части поделить числитель на знаменатель, после чего сложить результат с целой частью
  29. Смешанная дробь – обычное число, причем целая часть представляет собой то, что будет стоять до запятой, а дробная – после
  30. Если перед смешанной дробью стоит знак минус, то он стоит и перед целой частью, и перед дробной.
  31. Смешанные дроби

Смешанное число

Как у дроби выделить целую часть правило. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

Пусть у нас есть 7 яблок:

Нам необходимо разделить их поровну между тремя детьми. Как это возможно сделать?

1 способ:

Можно каждое яблоко разделить на три доли, то есть мы получим по  яблока, и дать всем детям долю от каждого яблока. Тогда каждый ребенок получит семь таких долей, значит, один ребенок получит  яблока:

2 способ:

Так как у нас семь яблок, то мы можем каждому ребенку дать по два целых яблока, а седьмое поделить между ними поровну, то есть по яблока каждому:

В этом случае каждый ребенок получит по яблока.

Такую сумму, как  , принято записывать так: . Число читают: «две целых одна третья». Число называют смешанным числом. В нем  число 2 называют целой частью, а число — его дробной частью, при этом дробная часть смешанного числа — это всегда правильная дробь.

Вернемся к задаче, которую мы рассматривали. В обоих случаях дети получили одинаковые части яблок, то есть мы можем сказать, что: .

Данное равенство показывает, что неправильную дробь можно записать в виде смешанного числа . Говорят, что из неправильной дроби выделена целая часть.

При этом из любой неправильной дроби, числитель которой нацело не делится на знаменатель, можно выделить целую часть, то есть записать ее в виде смешанного числа.

При этом, если числитель делится нацело на знаменатель, то эта дробь равна натуральному числу.

Чтобы неправильную дробь, числитель которой нацело не делится на знаменатель, преобразовать в смешанное число, надо числитель разделить на знаменатель; полученное неполное частное записать как целую часть смешанного числа, а остаток — как числитель его дробной части.

Пример 1: Выделим целую часть из неправильной дроби .

Для этого разделим 157 на 9 с остатком, имеем: 157: 9 = 17 (ост. 4)

То есть получили, что неполное частное равно 17, а остаток — 4. Значит, .

Мы выделили целую часть неправильной дроби, или по-другому, представили неправильную дробь в виде смешанного числа. На практике часто приходится выполнять обратное, то есть смешанное число представлять в виде неправильной дроби.

Чтобы преобразовать смешанное число в неправильную дробь, надо целую часть числа умножить на знаменатель дробной части и к полученному произведению прибавить числитель дробной части; эту сумму записать как числитель неправильной дроби, а в ее знаменатель записать знаменатель дробной части смешанного числа.

Пример 2: Преобразуем в смешанную дробь число :

.

Стоит отметить, что переместительное и сочетательное свойство сложения натуральных чисел выполняются и для смешанных чисел. На их основе мы можем записать:

Чтобы найти сумму двух смешанных чисел, надо отдельно сложить их целые и дробные части.

Пример 3:  Найдем сумму чисел и :

Обратите внимание, что число не является смешанным, так как дробь является неправильной.

Со смешанными числами можно также проводить операцию вычитания. При этом, если дробная часть уменьшаемого больше или равна дробной части вычитаемого, то можно воспользоваться следующим правилом.

Чтобы найти разность двух смешанных чисел, надо из целой и дробной частей уменьшаемого вычесть соответственно целую и дробную части вычитаемого.

Пример 4: Найдем разность чисел и :

В случае, если дробная часть уменьшаемого меньше дробной части вычитаемого, данное правило использовать нельзя, но уменьшаемое можно преобразовать так, чтобы данное правило было применимо.

Пример 5: Найдем разность чисел и :

Мы видим, что дробная часть уменьшаемого меньше дробной части вычитаемого, выполним преобразование уменьшаемого:

Тогда имеем:

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Доли. Обыкновенные дроби

Сравнение дробей

Делители и кратные

Признаки делимости на 10, на 5 и на 2

Четные и нечетные числа

Признаки делимости на 9 и на 3

Простые и составные числа

Разложение на простые множители

Наибольший общий делитель

Взаимно простые числа

Наименьшее общее кратное

Деление и дроби

Сложение и вычитание дробей с одинаковыми знаменателями

Сложение и вычитание смешанных чисел

Основное свойство дроби

Решето Эратосфена

Сокращение дробей

Приведение дробей к общему знаменателю

Сравнение, сложение и вычитание дробей с разными знаменателями

Умножение обыкновенных дробей

Деление обыкновенных дробей

Обыкновенные дроби

Правило встречается в следующих упражнениях:

5 класс

Задание 1085, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1090, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1109, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1118, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1131, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1354, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 6, Мерзляк, Полонский, Якир, Учебник

Упражнение 9, Мерзляк, Полонский, Якир, Учебник

Упражнение 801, Мерзляк, Полонский, Якир, Учебник

Упражнение 812, Мерзляк, Полонский, Якир, Учебник

6 класс

Задание 82, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 83, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 88, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 89, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 162, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 197, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 207, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 353, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 354, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 446, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

© budu5.com, 2020

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/1237

Смешанные числа — сложение, вычитание и умножение дробей с разными знаменателям

Как у дроби выделить целую часть правило. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

Многие ученики, когда подходит время изучать смешанные числа в 6 классе, сомневаются, что подобные вычисления пригодятся им в жизни, в особенности в наше время, когда можно при необходимости воспользоваться калькулятором.

Однако в быту подобными выражениями мы пользуемся чаще, чем может показаться на первый взгляд: при измерении времени, в рецептах блюд, дозировках лекарств и так далее.

Что такое смешанное число

Под смешанным числом понимают сумму натурального числа и обычной дроби, записанную без знака «+».

 ― это смешанное число. Читать данное выражение следует так: «четыре целых пять седьмых». 

Где 4 ― это целая, а 5/7 ― дробная часть.

Как представить смешанное число в виде неправильной дроби

Если мы, имея на руках один пирог и ещё половину (то есть 1½), возьмём и дополнительно поделим целый пирог на два равных куска, то у нас в итоге окажется три половинки (или 3/2). Но суть от этого всё равно не изменится: «количество» пирога останется прежним.

Этот пример наглядно показывает, что смешанное число можно превратить в неправильную дробь. Это преобразование можно выполнить за несколько шагов:

  1. Записать целую части в виде дроби.
  2. Подвести выражения под один знаменатель.
  3. Сложить обе части. 

Например, 5¾ преобразуется следующим образом:

Данные вычисления можно выразить и в более короткой формуле:

Пример преобразования:

Как выделить целую часть неправильной дроби

Чтобы совершить обратную операцию и превратить неправильную дробь в смешанное число, нужно сначала выделить её целую часть. Она будет равна результату деления числителя на знаменатель. 

Если поделилось без остатка, значит больше никаких действий выполнять не нужно. 

Если поделить без остатка не получается, то для завершения преобразования в смешанное число, остаток следует вынести в числитель. Знаменатель остаётся тем же.

Как перевести смешанную дробь в десятичную

Так как подобную процедуру часто приходится проделывать не только в школе, выполняя математические задания и решая различные уравнения, но и в повседневности, ― умение проделывать это легко и быстро может оказаться очень полезным.

Для перевода необходимо:

  1. Целую часть оставляем без изменений.
  2. Дробную часть переводим в десятичную. Для этого выражение нужно привести к общему знаменателю, который делится на 10. Получившееся в числителе число записывается после нуля с запятой.
  3. Складываем получившиеся результаты. 

Таким образом, чтобы преобразовать 53/5, нужно:

  1. Выписать целую часть ― 5.
  2. Преобразовать дробную часть .
  3. Сложить эти выражения 5 + 0,6 = 5,6.

Как сократить смешанную дробь

При сокращении целая часть не трогается, изменениям подвергается только дробная. Чтобы сократить её, нужно:

  • выявить наибольший общий множитель для числителя и знаменателя;
  • поделить их на это число. 

Например, чтобы сократить 76/9, необходимо:

  1. Найти общий множитель для 6 и 9. Для этого раскладываем их на простые числа 6 = 2 * 3; 9 = 3 * 3. Из чего следует, что общий множитель для них ― это 3.
  2. Делим и числитель, и знаменатель на три ― 6 : 3 = 2 и 9 : 3 = 3;

Сложение смешанных чисел

Чтобы осуществить сложение, нужно необходимую операцию проделать отдельно для целых и отдельно для дробных частей. А получившиеся результаты сложить. 

Например, чтобы решить следующий пример 

,

необходимо:

  1. Сложить целые части 9 + 3 = 12.
  2. Сложить дробные части 1/3 + 1/3 = 2/3.
  3. Сложить их друг с другом 

Вычитание смешанных чисел

Для вычитания вычисления аналогичны. Следующую задачу 

следует решить так:

  1. 7 – 4 = 3.
  2. 3/4 — 1/4 = 2/4 = 1/2.
  3. 3 + ½ = 3½.

Как умножать смешанные числа

Чтобы перемножить смешанные числа, необходимо:

  • осуществить их перевод в неправильные дроби;
  • полученные выражения перемножить по правилам умножения обыкновенных дробей. 

Для примера решим следующее задание:

Заключение

Происхождение чисел сложно точно проследить. Известно только, что человек стал пользоваться ими с самых седых времён. История дробей также берёт своё начало в глубокой древности: подобными понятиями оперировали уже в древнем Египте. 

Сегодня просто невозможно представить нашу жизнь без них. Все современные научные достижения, на которых основано наше общество, были бы попросту неосуществимы, не говоря уже о том, что значительно усложнилась бы наша повседневная жизнь. Вот почему так важно знать, что они собой представляют.

Источник: https://nauka.club/matematika/smeshannye-chisla.html

Как выделить целую часть числа из дроби. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

Как у дроби выделить целую часть правило. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

Принято записывать без знака $«+»$ в виде $n\frac{a}{b}$.

Пример 1

Например, сумма $4+\frac{3}{5}$ записывается $4\frac{3}{5}$. Такая запись называется смешанной дробью, а число, которое ей соответствует, — смешанным числом.

Определение 1

Смешанное число— это число, которое равно сумме натурального числа $n$ и правильной обыкновенной дроби $\frac{a}{b}$, и записано в виде $n\frac{a}{b}$. В таком случае число $n$ называется $n\frac{a}{b}$, а число $\frac{a}{b}$ — дробной частью числа/

Для смешанных чисел справедливы равенства $n\frac{a}{b}=n+\frac{a}{b}$ и $n+\frac{a}{b}=n\frac{a}{b}$.

Пример 2

Например, число $7\frac{4}{9}$ является смешанным числом, где натуральное число $7$ — целая его часть, $\frac{4}{9}$ — дробная часть. Примеры смешанных чисел: $17\frac{1}{2}$, $456\frac{111}{500}$, $23000\frac{4}{5}$.

Встречаются числа в смешанной записи, которые в дробной части содержат неправильную дробь . Например, $3\frac{54}{5}$, $56\frac{9}{2}$.

Запись этих чисел можно представить в виде суммы их целой и дробной части. Например, $3\frac{54}{5}=3+\frac{54}{5}$ и $56\frac{9}{2}=56+\frac{9}{2}$.

Такие числа не подходят по определению смешанного числа, т.к. дробная часть смешанных чисел должна быть правильной дробью.

Число $0\frac{2}{7}$ также не смешанное число, т.к. $0$ — не натуральное число.

Перевод смешанного числа в неправильную дробь

Алгоритм перевода смешанного числа в неправильную дробь:

    Записать смешанное число $n\frac{a}{b}$ в виде суммы целой и дробной части этого числа, т.е. в виде $n+\frac{a}{b}$.

    Целую часть исходного смешанного числа заменить дробью со знаменателем $1$.

    Сложить обыкновенные дроби $\frac{n}{1}$ и $\frac{a}{b}$ для получения искомой неправильной дроби, равной исходному смешанному числу.

Пример 3

Представить смешанное число $7\frac{3}{5}$ в виде неправильной дроби.

Решение.

Воспользуемся алгоритмом перевода смешанного числа в неправильную дробь.

    Смешанное число $7\frac{3}{5}=7+\frac{3}{5}$.

    Запишем число $7$ в виде $\frac{7}{1}$.

    Сложим обыкновенные дроби $\frac{7}{1}+\frac{3}{5}=\frac{35}{5}+\frac{3}{5}=\frac{38}{5}$.

Запишем краткую запись данного решения:

Ответ: $7\frac{3}{5}=\frac{38}{5}$

Весь алгоритм перевода смешанного числа $n\frac{a}{b}$ в неправильную дробь сводится к \textit{формуле перевода смешанного числа в неправильную дробь}:

Пример 4

Записать смешанное число $14\frac{3}{5}$ в виде неправильной дроби.

Решение.

Воспользуемся формулой $n\frac{a}{b}=\frac{n\cdot b+a}{b}$ для перевода смешанного числа в неправильную дробь. В данном примере $n=14$, $a=3$, $b=5$.

Получим, $14\frac{3}{5}=\frac{14\cdot 5+3}{5}=\frac{73}{5}$.

Ответ: $14\frac{3}{5}=\frac{73}{5}$

Выделение целой части из неправильной дроби

При получении числового решения не принято оставлять ответ в виде неправильной дроби. Неправильная дробь преобразуется в равное ей натуральное число (если числитель делится нацело на знаменатель), или выделяют целую часть из неправильной дроби (если числитель не делится нацело на знаменатель).

Определение 2

Выделением целой части из неправильной дроби называется замена дроби равным ей смешанным числом.

Для выделения целой части из неправильной дроби нужно представить неправильную дробь $\frac{a}{b}$ в виде смешанного числа $q\frac{r}{b}$, где $q$ — неполное частное, $r$— остаток от деления $a$ на $b$. Таким образом, целая часть равна неполному частному от деления $a$ на $b$, а остаток равен числителю дробной части.

Докажем это утверждение. Для этого достаточно показать, что $q\frac{r}{b}=\frac{a}{b}$.

Переведем смешанное число $q\frac{r}{b}$ в неправильную дробь с помощью формулы:

Т.к. $q$— неполное частное, $r$— остаток от деления $a$ на $b$, то является справедливым равенство $a=b\cdot q+r$. Таким образом, $\frac{q\cdot b+r}{b}=\frac{a}{b}$, откуда $q\frac{r}{b}=\frac{a}{b}$, что и требовалось показать.

Таким образом, сформулируем \textit{правило выделения целой части из неправильной дроби} $\frac{a}{b}$:

    Разделить $a$ на $b$ с остатком, при этом определить неполное частное $q$ и остаток $r$.

    Записать смешанное число $q\frac{r}{b}$, равное исходной дроби $\frac{a}{b}$.

Пример 5

Выделить целую часть из дроби $\frac{107}{4}$.

Решение.

Выполним деление в столбик:

Рисунок 1.

Итак, в результате деления числителя $a=107$ на знаменатель $b=4$ получаем неполное частное $q=26$ и остаток $r=3$.

Получаем, что неправильная дробь $\frac{107}{4}$ равна смешанному числу $q\frac{r}{b}=26\frac{3}{4}$.

Ответ: $\frac{{\rm 107}}{{\rm 4}}{\rm =26}\frac{{\rm 3}}{{\rm 4}}$.

Сложение смешанного числа и натурального числа

Правило сложения смешанного и натурального числа:

Для сложения смешанного и натурального числа нужно к целой части смешанного числа прибавить данное натуральное число, дробная часть остается без изменения:

где $a\frac{b}{c}$ — смешанное число,

$n$ — натуральное число.

Пример 6

Выполнить сложение смешанного числа $23\frac{4}{7}$ и числа $3$.

Решение.

Ответ:$23\frac{4}{7}+3=26\frac{4}{7}.$

Сложение двух смешанных чисел

При сложении двух смешанных чисел складываются их целые части и дробные части.

https://www.youtube.com/watch?v=N5ilTvFUhTA

Пример 7

Сложить смешанные числа $3\frac{1}{5}$ и $7\frac{4}{7}$.

Решение.

Воспользуемся формулой:

\ \

Ответ: $10\frac{27}{35}.$

На вопрос Как из неправильной дроби выделить целую часть? заданный автором Прососаться лучший ответ это Для того чтобы перевести число необходимо разделить с остатком числитель на знаменатель т. е. узнать сколько «целых» раз содержится.

И это неполное частное и будет целой частью.

Затем остаток (если он есть) дает числитель, а делитель — знаменатель дробной части (чтобы было понятнее нужно знаменатель умножить на целое число, которое ты получила ранее, а затем из ЧИСЛИТЕЛЯ вычесть то что ты сейчас получила)Например: 136/28=4 целых 24/28, это сократимая дробь = 4 целых 6/7Я 136 разделила на 28 и получила 4. Затем чтобы узнать числитель, умножила 28 на 4 получилось 112, и из 136 вычла 112. Для сокращения нужно и числитель и знаменатель разделить на одно и тоже число (в данном случае это 4)

Удачи!

Ответ от Невропатолог[новичек]25/22, 22/22-это одна целая, и остаётся 3/22, и того 1целая и 3/22

Ответ от Проспать[гуру]поделить числитель на знаменатель, число до запятой — это целая часть, потом целую часть умножить на знаменатель и вычесть это из исходного числителя. Эта цифра будет числителем.например: 88/16=5,516*5=8088-80=8

5 8/16=5 1/2

Ответ от Вадим Кульпинов[гуру]

Ответ от Анна[новичек]например 1000/9….легко 1000 делишь на 9…получаешь 111это целое число а остаток идет в числитель а знаменатель остается прежним 9….

Ответ от Єранче[новичек]попробуй на калькуляторе посчитать))раздели чисоитель на знаменатель и выпиши число слева от запятой.

если надо выделить дробную часть:выделенную целую часть умножаешь на знаменатель и полученное число вычитаешь из числителя. То есть:79/31. выделяем целую часть: 262.

выделенную целую часть умножаешь на знаменатель: 26*33. полученное число вычитаешь из числителя 79-(26*3)

ураа.

Ответ от Алексей Лаухтин[гуру]числитель раздели на знаменатель получившееся число записывай в виде целого числа а остаток в виде числителя а знаменатель остается тот же

Ответ от Ѐоман Гейко[эксперт]блин, вот я сначала научился это делать. только потом появился интернет, я научился и мправильно пользоваться и совсем нескоро нашёл этот сайт)

Ответ от _DaFNa_[активный]например, 23/3 — делишь числитель на знаменатель по калькулятору (если он рядом) , берёшь первое число, умножаешь на знаменатель и получаешь целую часть этой дроби.

Из числителя вычитаешь число, которое получилось при умножении на знаменатель, и получаешь правильную дробь. В ответе пишешь целую часть и рядом правильную дробь.

Если калькулятора рядом нет, то тут уже немного интуитивно делишь и дальше такие же действия.

Самые хорошие дроби, у которых в знаменателе стоит 2, 5 или 10

Источник: https://hookahday.ru/kak-vydelit-celuyu-chast-chisla-iz-drobi-smeshannye-chisla-perevod-smeshannogo/

Смешанные числа, перевод смешанного числа в неправильную дробь и обратно, как перевести неправильную дробь в правильную

Как у дроби выделить целую часть правило. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

В этом материале мы разберем такое понятие, как смешанные числа. Начнем, как всегда, с определения и небольших примеров, потом поясним связь смешанных чисел и неправильных дробей. После этого мы изучим, как правильно выделять целую часть из дроби и получать в результате целое число.

Понятие смешанного числа

Если мы возьмем сумму n+ab, где значением n может быть любое натуральное число, а ab представляет из себя правильную обыкновенную дробь, то мы можем записать то же самое, не используя плюс: nab. Возьмем конкретные числа для ясности: так, 28+57 – это то же самое, что и 2857. Запись дроби рядом с целым числом принято называть смешанным числом.

Определение 1

Смешанное число представляет собой такое число, которое равно сумме натурального числа n с правильной обыкновенной дробью ab. В таком случае n является целой частью числа, а ab – его дробной частью.

Из определения следует, что любое смешанное число равно тому, что получится в результате сложения его целой и дробной части. Таким образом, будет выполняться равенство nab=n+ab.

Его также можно записать в виде n+ab=nab.

Какие можно привести примеры смешанных чисел? Так, к ним относится 518, при этом пятерка – это его целая часть, а одна восьмая – дробная. Еще примеры: 112, 2343453, 34000625.

Выше мы писали, что в дробной части смешанного числа должна стоять только правильная дробь. Иногда можно встретить записи вида 5223, 7572. Они не являются смешанными числами, т.к. их дробная часть неправильная.

Их нужно понимать как сумму целой и дробной части. Такие числа можно привести к стандартному виду записи смешанных чисел, выделив целую часть из неправильной дроби и добавив ее к 5 и 75 в этих примерах соответственно.

Числа вида 0314также не относятся к смешанным. Здесь не выполняется первая часть условия: целая часть должна быть представлена только натуральным числом, а нуль им не является.

Как соотносятся между собой неправильные дроби и смешанные числа

Эту связь проще всего проследить на конкретном примере.

Пример 1

Возьмем целый торт и еще три четверти такого же. Согласно правилам сложения, у нас на столе находится 1+34 торта. Эту сумму можно представить в виде смешанного числа как 134 торта. Если мы возьмем целый торт и тоже разрежем его на четыре равные части, то у нас на столе будет 74 торта. Очевидно, что от разрезания количество не увеличилось, и 134=74.

Наш пример доказывает, что в виде смешанного числа можно представить любую неправильную дробь.

Вернемся к нашим 74 торта, оставшимся на столе. Сложим из его кусочков один торт обратно (1+34). У нас опять будет 134.

Ответ: 74=134.

Мы поняли, как приводить неправильную дробь к виду смешанного числа. Если в числителе неправильной дроби стоит такое число, которое можно разделить на знаменатель без остатка, то можно сделать это, и тогда наша неправильная дробь станет натуральным числом.

Пример 2

Например,

84=2, так как 8:4=2.

Как перевести смешанное число в неправильную дробь

Чтобы успешно решать задачи, полезно уметь производить и обратное действие, то есть делать из смешанных чисел неправильные дроби. В этом пункте мы разберем, как правильно это сделать.

Для этого нужно воспроизвести следующую последовательность действий:

1. Для начала представляем имеющееся смешанное число nab как сумму целой и дробной части. Получается n+ab

2. Далее заменяем целую часть на дробь со знаменателем, равным единице (то есть записываем n как n1).

3.После этого выполняем уже знакомое действие – складываем две обыкновенные дроби n1 и ab. Получившаяся в результате неправильная дробь и будет равной смешанному числу, данному в условии.

Разберем это действие на конкретном примере.

Пример 3

Представьте 537 в виде неправильной дроби.

Решение 

Выполняем последовательно шаги указанного выше алгоритма. Наше число 537 – это сумма целой и дробной части, то есть 5+37. Теперь пятерку запишем в виде 51. У нас получилась сумма 51+37.

Последний шаг – сложение дробей, имеющих разные знаменатели:

51+37=357+37=387

Все решение к краткой форме можно записать как 537=5+37=51+37=357+37=387.

Ответ: 537=387.

Опиши задание

Таким образом, с помощью указанной выше цепочки действий мы можем перевести любое смешанное число nab в неправильную дробь. У нас получилась формула nab=n·b+ab, которую мы и будем брать для решения дальнейших задач.

Пример 4

Представьте 1525 в виде неправильной дроби.

Решение

Возьмем указанную формулу и подставим в нее нужные значения. У нас n=15, a=2, b=5, следовательно, 1525=15·5+25=775.

Ответ: 1525=775.

Как выделить из неправильной дроби целую часть

Обычно мы не указываем неправильную дробь в качестве итогового ответа. Принято доводить вычисления до конца и заменять ее либо натуральным числом (разделив числитель на знаменатель), либо смешанным числом. Как правило, первый способ используется, когда разделить числитель на знаменатель можно без остатка, а второй – если такое действие невозможно.

Когда мы выделяем из неправильной дроби целую часть, мы просто заменяем ее равным смешанным числом.

Разберем, как именно это делается.

Определение 2

Любая неправильная дробь ab –это смешанное число qrb. Здесь q представляет собой неполное частное, а r – это остаток от ab. Таким образом, целая часть смешанного числа есть неполное частное от деления ab, а дробная – это остаток.

Приведем доказательство этого утверждения.

Нам требуется пояснить, почему qrb=ab. Для этого смешанное число qrb надо представить в виде неправильной дроби, выполнив все шаги алгоритма из предыдущего пункта. Поскольку – неполное частное, а r – остаток от деления a на b, то должно выполняться равенство a=b·q+r.

Таким образом, q·b+rb=ab поэтому qrb=ab. Это и есть доказательство нашего утверждения. Подытожим:

Определение 3

Выделение целой части из неправильной дроби ab осуществляется таким образом:

1) производим деление a на b с остатком и записываем неполное частное q и остаток r отдельно.

2) Записываем результаты в виде qrb. Это и есть наше смешанное число, равное исходной неправильной дроби.

Пример 5

Представьте 1074 в виде смешанного числа.

Решение

Делим 104 на 7 столбиком:

Деление числителя a=118 на знаменатель b=7 дает нам в итоге неполное частное q=16 и остаток r=6.

В итоге мы получаем, что неправильная дробь 1187 равна смешанному числу qrb=1667.

Ответ: 1187=1667.

Нам осталось посмотреть, как заменить неправильную дробь натуральным числом (при условии, что ее числитель делится на знаменатель без остатка).

Для этого вспомним, какая связь существует между обыкновенными дробями и делением. Из этого можно вывести равенства: ab=a:b=c. Получается, что неправильную дробь ab можно заменить натуральным числом c.

Пример 6

Например, если в ответе получилась неправильная дробь 273, то можем записать вместо нее 9, поскольку273=27:3=9.

Ответ: 273=9.

Источник: https://Zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/smeshannye-chisla-perevod-smeshannogo-chisla-v-nep/

Смешанная дробь. Действия со смешанными дробями

Как у дроби выделить целую часть правило. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

Записываются они как \(a\)\(\frac{m}{n}\), где – \(a\) целое число,\(\frac{m}{n}\) — правильная дробь. 

Например:   \(2\)\(\frac{3}{5}\) здесь \(2\) – целая часть, \(\frac{3}{5}\) – дробная часть (правильная дробь).

                     \(17\)\(\frac{17}{18}\) здесь \(17\) – целая часть, \(\frac{17}{18}\) – дробная часть (правильная дробь).

Фактически такие дроби представляют собой сумму целого числа и дроби, то есть между целой и дробной частью стоит знак «плюс» (а не «умножить»)

Например:  \(2\frac{3}{5}=2+\frac{3}{5}\)

Это не нужно заучивать, просто поймите суть.

Вдумайтесь, что на практике означает, например, запись: «на складе осталось \(2\)\(\frac{3}{5}\) мешка муки»? Что на складе лежит два полных мешка и еще один заполненный на \(\frac{3}{5}\).

Где здесь место умножению? Очевидно ведь, что это два плюс еще \(\frac{3}{5}\) мешка муки! Понимать этот момент очень важно, потому что здесь допускается огромное количество ошибок при вычислениях со смешанными дробями (см. ниже).

Чтобы преобразовать смешанную дробь в неправильную нужно целую часть умножить на знаменатель дробной и прибавить к результату числитель — получиться числитель неправильной дроби. Знаменатель при этом не меняется. То есть,

\(a\)\(\frac{m}{n}\)\(=\)\(\frac{a·n + m}{n}\).

Например, при преобразовании \(2\)\(\frac{3}{5}\) получим \(\frac{2·5 + 3}{5}=\frac{13}{5}\).

Почему вычисление производиться именно так? Все дело в плюсе, стоящем между целой и дробной частью (см. выше). На самом деле, полное преобразование выглядит вот так:

Но расписывать все так подробно слишком долго, да и незачем, проще сразу получать ответ, пользуясь формулой выше.

Чтобы преобразовать неправильную дробь в смешанную, в ней нужно выделить целую часть

Чтобы этого добиться, мы задаем себе вопрос – сколько раз знаменатель целиком «помещается» в числителе?
Например, пусть нам нужно представить как смешанную дробь \(\frac{13}{5}\). Сколько раз пятерка «помещается» в тринадцати? Два раза.

Третий раз уже «не влезет». Значит, целая часть будет равна двойке, а дробная – остатку, то есть \(\frac{3}{5}\). Оформляем: \(\frac{13}{5}\)\(=\)\(\frac{10 + 3}{5}\)\(=\)\(\frac{10}{5}\)\(+\)\(\frac{3}{5}\)\(=2+\)\(\frac{3}{5}\)\(=2\)\(\frac{3}{5}\).

Вот еще примеры с верным преобразованием:

\(\frac{37}{11}\)\(=\)\(\frac{33 + 4}{11}\)\(=\)\(\frac{33}{11}\)\(+\)\(\frac{4}{11}\)\(=3+\)\(\frac{4}{11}\)\(=3\)\(\frac{4}{11}\)
\(\frac{26}{3}\)\(=\)\(\frac{24 + 2}{3}\)\(=\)\(\frac{24}{3}\)\(+\)\(\frac{2}{3}\)\(=8+\)\(\frac{2}{3}\)\(=8\)\(\frac{2}{3}\)

А вот пример неправильного выделения целой части:

\(\frac{7}{2}\)\(=\)\(\frac{4 + 3}{2}\)\(=\)\(\frac{4}{2}\)\(+\)\(\frac{3}{2}\)\(=2+\)\(\frac{3}{2}\)\(=2\)\(\frac{3}{2}\)

В чем ошибка? В том, что дробная часть должна быть правильной дробью. А здесь не так — значит целая часть выделена не полностью. Действительно, ведь двойка в семерке нацело помещается три раза, а не два. Поэтому верным будет вот такое выделение:

\(\frac{7}{2}\)\(=\)\(\frac{6 + 1}{2}\)\(=\)\(\frac{6}{2}\)\(+\)\(\frac{1}{2}\)\(=3+\)\(\frac{1}{2}\)\(=3\)\(\frac{1}{2}\)

Чтобы преобразовать смешанную дробь в десятичную, нужно в дробной части поделить числитель на знаменатель, после чего сложить результат с целой частью

Например: \(2\)\(\frac{3}{5}\)\(=2+\)\(\frac{3}{5}\)\(=2+0,6=2,6\)
                      \(7\)\(\frac{11}{25}\)\(=7+\)\(\frac{11}{25}\)\(=7+0,44=7,44\)

Отсюда вывод:

Смешанная дробь – обычное число, причем целая часть представляет собой то, что будет стоять до запятой, а дробная – после

Главной причиной большинства ошибок является забывание описанного выше момента – между целой и дробной частью стоит «плюс», а не «умножить».

Пример: Вычислить \(2\)\(\frac{3}{5}\)\(:\)\(\frac{1}{5}\)
Ошибочное решение: \(2\)\(\frac{3}{5}\)\(:\)\(\frac{1}{5}\)\(=2\)\(\frac{3}{5}\)\(·\)\(\frac{5}{1}\)\(=2\)\(\frac{3 · 5}{5 · 1}\)\(=2·3=6\)
Правильное решение: \(2\)\(\frac{3}{5}\)\(:\)\(\frac{1}{5}\)\(=(2+\)\(\frac{3}{5}\)\():\)\(\frac{1}{5}\)\(=\)\(\frac{2·5+3}{5}\)\(:\)\(\frac{1}{5}\)\(=\)\(\frac{13}{5}\)\(·\)\(\frac{5}{1}\)\(=\)\(\frac{13 · 5}{5 · 1}\)\(=13\)

Пример: Вычислить \(3\)\(\frac{1}{5}\)\(·1\)\(\frac{1}{4}\)
Ошибочное решение: \(3\)\(\frac{1}{5}\)\(·1\)\(\frac{1}{4}\)\(=3·\)\(\frac{1}{5}\)\(·1·\)\(\frac{1}{4}\)\(=\)\(\frac{3}{5}\)\(·\)\(\frac{1}{4}\)\(=\)\(\frac{3 · 1}{5 · 4}\)\(=\)\(\frac{3}{20}\)
Правильное решение: \(3\)\(\frac{1}{5}\)\(·1\)\(\frac{1}{4}\)\(=(3+\)\(\frac{1}{5}\)\()·(1+\)\(\frac{1}{4}\)\()=\)\(\frac{3·5 + 1}{5}\)\(·\)\(\frac{1·4 + 1}{4}\)\(=\)\(\frac{16}{5}\)\(·\)\(\frac{5}{4}\)\(=\)\(\frac{16 · 5}{5 · 4}\)\(=4\)

Из того, что целая и дробная части соединены знаком плюс следует еще один вывод:

Если перед смешанной дробью стоит знак минус, то он стоит и перед целой частью, и перед дробной.

Например: \(-7\) \(\frac{5}{9}\)\(=-(7+\) \(\frac{5}{9}\)\()=-7-\) \(\frac{5}{9}\).
Это важно помнить при вычитании смешанных дробей.

Пример. Вычислить \(4\)\(\frac{3}{5}\)\(-2\)\(\frac{1}{5}\).
Решение: \(4\)\(\frac{3}{5}\)\(-2\)\(\frac{1}{5}\)\(=(4+\)\(\frac{3}{5}\)\()-(2+\)\(\frac{1}{5}\)\()=4+\)\(\frac{3}{5}\)\(-2-\)\(\frac{1}{5}\)\(=4-2+\)\(\frac{3}{5}\)\(-\)\(\frac{1}{5}\)\(=2+\)\(\frac{3-1}{5}\)\(=2+\)\(\frac{2}{5}\)\(=2\)\(\frac{2}{5}\).

Вообще вычитание (сложение) смешанных дробей удобно проводить в два этапа: сначала отдельно вычесть (сложить) целые части, а затем – дробные.

Дроби (шпаргалка)

Скачать статью {n}\), где – \(a\) целое число,\(\frac{m}{n}\) — правильная дробь. НапD»,»word_count»:529,»direction»:»ltr»,»total_pages»:1,»rendered_pages»:1}

Источник: http://cos-cos.ru/math/89/

Смешанные дроби

Как у дроби выделить целую часть правило. Смешанные числа, перевод смешанного числа в неправильную дробь и обратно

В математике сумму $n+\frac{a}{b}$, где $n$ -натуральное число, $\frac{a}{b}$ — правильная обыкновенная дробь, принято записывать без знака $«+»$ в виде $n\frac{a}{b}$.

Пример 1

Например, сумма $4+\frac{3}{5}$ записывается $4\frac{3}{5}$. Такая запись называется смешанной дробью, а число, которое ей соответствует, — смешанным числом.

Определение 1

Смешанное число — это число, которое равно сумме натурального числа $n$ и правильной обыкновенной дроби $\frac{a}{b}$, и записано в виде $n\frac{a}{b}$. В таком случае число $n$ называется $n\frac{a}{b}$, а число $\frac{a}{b}$ — дробной частью числа/

Для смешанных чисел справедливы равенства $n\frac{a}{b}=n+\frac{a}{b}$ и $n+\frac{a}{b}=n\frac{a}{b}$.

Пример 2

Например, число $7\frac{4}{9}$ является смешанным числом, где натуральное число $7$ — целая его часть, $\frac{4}{9}$ — дробная часть. Примеры смешанных чисел: $17\frac{1}{2}$, $456\frac{111}{500}$, $23000\frac{4}{5}$.

Встречаются числа в смешанной записи, которые в дробной части содержат неправильную дробь. Например, $3\frac{54}{5}$, $56\frac{9}{2}$.

Запись этих чисел можно представить в виде суммы их целой и дробной части. Например, $3\frac{54}{5}=3+\frac{54}{5}$ и $56\frac{9}{2}=56+\frac{9}{2}$.

Такие числа не подходят по определению смешанного числа, т.к. дробная часть смешанных чисел должна быть правильной дробью.

  • Курсовая работа 430 руб.
  • Реферат 240 руб.
  • Контрольная работа 200 руб.

Число $0\frac{2}{7}$ также не смешанное число, т.к. $0$ — не натуральное число.

Вопросы адвокату
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: